[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 208, 21 ] =
PL(CS(C_26(1,5)[26^2],1)).
(I) Following is a form readable by MAGMA:
g:=Graph<208|{ {104, 105}, {103, 105}, {90, 127}, {89, 127}, {86, 126}, {86,
127}, {85, 127}, {85, 126}, {81, 125}, {82, 126}, {81, 126}, {82, 125}, {77,
125}, {74, 123}, {77, 124}, {73, 123}, {78, 124}, {78, 125}, {73, 124}, {74,
124}, {65, 121}, {66, 122}, {65, 122}, {66, 121}, {70, 122}, {70, 123}, {69,
123}, {69, 122}, {54, 118}, {54, 119}, {57, 120}, {53, 119}, {58, 120}, {53,
118}, {49, 117}, {50, 118}, {61, 121}, {61, 120}, {62, 120}, {49, 118}, {50,
117}, {62, 121}, {58, 119}, {57, 119}, {33, 113}, {34, 114}, {33, 114}, {34,
113}, {38, 114}, {38, 115}, {37, 115}, {37, 114}, {45, 117}, {42, 115}, {45,
116}, {41, 115}, {46, 116}, {46, 117}, {41, 116}, {42, 116}, {13, 109}, {10,
107}, {13, 108}, {9, 107}, {14, 108}, {14, 109}, {9, 108}, {10, 108}, {1, 105},
{2, 106}, {25, 112}, {26, 112}, {1, 106}, {2, 105}, {6, 106}, {29, 113}, {6,
107}, {29, 112}, {5, 107}, {30, 112}, {5, 106}, {30, 113}, {26, 111}, {25, 111},
{22, 110}, {22, 111}, {21, 111}, {21, 110}, {17, 109}, {18, 110}, {17, 110},
{18, 109}, {3, 131}, {4, 132}, {7, 133}, {50, 176}, {39, 165}, {38, 164}, {72,
202}, {7, 132}, {51, 176}, {39, 164}, {38, 165}, {60, 191}, {72, 203}, {85,
208}, {57, 191}, {61, 187}, {3, 132}, {4, 131}, {61, 186}, {15, 135}, {88, 208},
{34, 170}, {23, 159}, {22, 158}, {12, 133}, {35, 170}, {23, 158}, {22, 159},
{15, 134}, {76, 197}, {12, 134}, {42, 160}, {35, 169}, {76, 198}, {34, 169},
{43, 160}, {68, 207}, {8, 132}, {73, 197}, {77, 193}, {8, 133}, {11, 134}, {77,
192}, {11, 133}, {65, 207}, {69, 203}, {69, 202}, {73, 198}, {24, 136}, {92,
204}, {41, 185}, {80, 192}, {24, 137}, {27, 138}, {65, 208}, {80, 193}, {27,
137}, {89, 203}, {20, 135}, {41, 186}, {19, 135}, {31, 139}, {68, 208}, {28,
137}, {89, 204}, {44, 185}, {31, 138}, {16, 134}, {44, 186}, {40, 190}, {28,
138}, {16, 135}, {92, 203}, {40, 191}, {37, 191}, {93, 199}, {47, 181}, {46,
180}, {19, 136}, {93, 198}, {47, 180}, {46, 181}, {37, 190}, {2, 158}, {54,
170}, {51, 175}, {20, 136}, {55, 171}, {58, 166}, {3, 158}, {55, 170}, {54,
171}, {50, 175}, {59, 166}, {3, 157}, {23, 137}, {59, 165}, {62, 160}, {63,
161}, {2, 157}, {23, 136}, {58, 165}, {62, 161}, {63, 160}, {24, 184}, {97,
193}, {47, 143}, {24, 185}, {47, 142}, {44, 141}, {44, 142}, {51, 144}, {97,
194}, {10, 174}, {52, 144}, {40, 140}, {11, 174}, {100, 193}, {43, 142}, {40,
141}, {11, 173}, {100, 194}, {96, 198}, {55, 145}, {43, 141}, {15, 169}, {14,
168}, {10, 173}, {96, 199}, {55, 144}, {15, 168}, {14, 169}, {27, 179}, {36,
140}, {35, 139}, {56, 144}, {20, 189}, {26, 179}, {56, 145}, {59, 146}, {20,
190}, {39, 141}, {32, 138}, {59, 145}, {32, 139}, {39, 140}, {17, 189}, {21,
185}, {63, 147}, {21, 184}, {60, 145}, {63, 146}, {26, 180}, {60, 146}, {17,
190}, {36, 139}, {35, 140}, {27, 180}, {19, 163}, {31, 175}, {30, 174}, {18,
163}, {31, 174}, {30, 175}, {4, 183}, {6, 178}, {43, 159}, {7, 179}, {6, 179},
{42, 159}, {7, 178}, {1, 183}, {18, 164}, {19, 164}, {1, 184}, {52, 143}, {4,
184}, {51, 143}, {48, 142}, {48, 143}, {88, 152}, {9, 200}, {91, 154}, {88,
153}, {91, 153}, {84, 151}, {8, 204}, {103, 163}, {102, 162}, {99, 167}, {95,
155}, {12, 200}, {83, 151}, {8, 205}, {103, 162}, {102, 163}, {98, 167}, {95,
154}, {92, 153}, {88, 157}, {80, 150}, {92, 154}, {80, 151}, {5, 205}, {85,
157}, {5, 204}, {98, 168}, {12, 199}, {99, 168}, {83, 152}, {84, 152}, {9, 199},
{13, 195}, {87, 153}, {13, 194}, {87, 152}, {67, 147}, {68, 148}, {28, 205},
{16, 194}, {28, 206}, {64, 146}, {71, 149}, {16, 195}, {64, 147}, {71, 148},
{25, 205}, {104, 188}, {29, 201}, {29, 200}, {104, 189}, {25, 206}, {67, 148},
{68, 147}, {79, 151}, {101, 189}, {76, 149}, {101, 188}, {89, 128}, {79, 150},
{76, 150}, {90, 128}, {72, 148}, {93, 129}, {72, 149}, {93, 128}, {75, 150},
{75, 149}, {94, 128}, {94, 129}, {36, 196}, {98, 130}, {97, 129}, {87, 183},
{75, 171}, {86, 182}, {74, 171}, {87, 182}, {86, 183}, {33, 195}, {45, 207},
{45, 206}, {98, 129}, {97, 130}, {102, 130}, {33, 196}, {102, 131}, {74, 172},
{101, 131}, {36, 195}, {101, 130}, {75, 172}, {32, 200}, {90, 178}, {78, 166},
{79, 167}, {84, 188}, {32, 201}, {91, 178}, {78, 167}, {79, 166}, {81, 187},
{91, 177}, {90, 177}, {81, 188}, {84, 187}, {53, 197}, {82, 162}, {53, 196},
{83, 162}, {83, 161}, {95, 173}, {94, 172}, {82, 161}, {95, 172}, {94, 173},
{66, 182}, {104, 156}, {67, 182}, {67, 181}, {70, 176}, {71, 177}, {66, 181},
{70, 177}, {71, 176}, {49, 201}, {100, 156}, {99, 155}, {57, 192}, {64, 186},
{96, 154}, {49, 202}, {103, 156}, {96, 155}, {64, 187}, {56, 196}, {60, 192},
{52, 201}, {56, 197}, {48, 206}, {52, 202}, {48, 207}, {100, 155}, {99, 156}
}>;
(II) A more general form is to represent the graph as the orbit of {104, 105}
under the group generated by the following permutations:
a: (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)(17, 18)(19, 20)(21,
22)(23, 24)(25, 26)(27, 28)(29, 30)(31, 32)(33, 34)(35, 36)(37, 38)(39, 40)(41,
42)(43, 44)(45, 46)(47, 48)(49, 50)(51, 52)(53, 54)(55, 56)(57, 58)(59, 60)(61,
62)(63, 64)(65, 66)(67, 68)(69, 70)(71, 72)(73, 74)(75, 76)(77, 78)(79, 80)(81,
82)(83, 84)(85, 86)(87, 88)(89, 90)(91, 92)(93, 94)(95, 96)(97, 98)(99,
100)(101, 102)(103, 104)(157, 183)(158, 184)(159, 185)(160, 186)(161, 187)(162,
188)(163, 189)(164, 190)(165, 191)(166, 192)(167, 193)(168, 194)(169, 195)(170,
196)(171, 197)(172, 198)(173, 199)(174, 200)(175, 201)(176, 202)(177, 203)(178,
204)(179, 205)(180, 206)(181, 207)(182, 208) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(5, 86, 103, 24)(6, 87, 104, 21)(7, 88, 101, 22)(8, 85, 102, 23)(9, 66,
99, 44)(10, 67, 100, 41)(11, 68, 97, 42)(12, 65, 98, 43)(13, 46, 95, 64)(14, 47,
96, 61)(15, 48, 93, 62)(16, 45, 94, 63)(17, 26, 91, 84)(18, 27, 92, 81)(19, 28,
89, 82)(20, 25, 90, 83)(29, 70, 79, 40)(30, 71, 80, 37)(31, 72, 77, 38)(32, 69,
78, 39)(33, 50, 75, 60)(34, 51, 76, 57)(35, 52, 73, 58)(36, 49, 74, 59)(53, 54,
55, 56)(105, 184, 106, 183)(107, 182, 156, 185)(108, 181, 155, 186)(109, 180,
154, 187)(110, 179, 153, 188)(111, 178, 152, 189)(112, 177, 151, 190)(113, 176,
150, 191)(114, 175, 149, 192)(115, 174, 148, 193)(116, 173, 147, 194)(117, 172,
146, 195)(118, 171, 145, 196)(119, 170, 144, 197)(120, 169, 143, 198)(121, 168,
142, 199)(122, 167, 141, 200)(123, 166, 140, 201)(124, 165, 139, 202)(125, 164,
138, 203)(126, 163, 137, 204)(127, 162, 136, 205)(128, 161, 135, 206)(129, 160,
134, 207)(130, 159, 133, 208)(131, 158, 132, 157)
c: (1, 5, 10, 13, 18, 21, 25, 30, 33, 38, 41, 45, 50, 53, 58, 61, 65, 70, 73,
78, 81, 85, 90, 93, 98, 101, 3, 7, 12, 15, 20, 23, 27, 32, 35, 40, 43, 47, 52,
55, 60, 63, 67, 72, 75, 80, 83, 87, 92, 95, 100, 103)(2, 6, 9, 14, 17, 22, 26,
29, 34, 37, 42, 46, 49, 54, 57, 62, 66, 69, 74, 77, 82, 86, 89, 94, 97, 102, 4,
8, 11, 16, 19, 24, 28, 31, 36, 39, 44, 48, 51, 56, 59, 64, 68, 71, 76, 79, 84,
88, 91, 96, 99, 104)(105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156)(157, 178, 199, 168, 189, 158, 179, 200,
169, 190, 159, 180, 201, 170, 191, 160, 181, 202, 171, 192, 161, 182, 203, 172,
193, 162, 183, 204, 173, 194, 163, 184, 205, 174, 195, 164, 185, 206, 175, 196,
165, 186, 207, 176, 197, 166, 187, 208, 177, 198, 167, 188)
C4[ 208, 21 ]
208
-1 105 106 183 184
-2 157 158 105 106
-3 132 157 158 131
-4 132 183 184 131
-5 204 106 205 107
-6 178 179 106 107
-7 132 133 178 179
-8 132 133 204 205
-9 199 200 107 108
-10 107 173 108 174
-11 133 134 173 174
-12 133 199 134 200
-13 194 195 108 109
-14 168 169 108 109
-15 134 135 168 169
-16 134 135 194 195
-17 110 189 190 109
-18 110 163 109 164
-19 135 136 163 164
-20 189 135 190 136
-21 110 111 184 185
-22 110 111 158 159
-23 136 158 137 159
-24 136 137 184 185
-25 111 112 205 206
-26 111 112 179 180
-27 179 180 137 138
-28 137 138 205 206
-29 112 200 113 201
-30 112 113 174 175
-31 138 139 174 175
-32 200 201 138 139
-33 113 114 195 196
-34 113 114 169 170
-35 169 170 139 140
-36 139 140 195 196
-37 190 114 191 115
-38 165 114 115 164
-39 165 140 141 164
-40 190 191 140 141
-41 115 116 185 186
-42 115 159 116 160
-43 159 160 141 142
-44 141 185 142 186
-45 116 117 206 207
-46 180 181 116 117
-47 143 180 181 142
-48 143 206 207 142
-49 201 202 117 118
-50 176 117 118 175
-51 143 176 144 175
-52 143 144 201 202
-53 118 119 196 197
-54 170 171 118 119
-55 144 145 170 171
-56 144 145 196 197
-57 191 192 119 120
-58 165 166 119 120
-59 165 166 145 146
-60 145 146 191 192
-61 121 187 120 186
-62 121 160 161 120
-63 146 147 160 161
-64 187 146 147 186
-65 121 122 207 208
-66 121 122 181 182
-67 147 148 181 182
-68 147 148 207 208
-69 122 123 202 203
-70 176 122 177 123
-71 176 177 148 149
-72 202 148 203 149
-73 198 123 124 197
-74 123 124 171 172
-75 149 171 150 172
-76 198 149 150 197
-77 124 125 192 193
-78 166 167 124 125
-79 166 167 150 151
-80 192 193 150 151
-81 187 188 125 126
-82 125 126 161 162
-83 161 151 162 152
-84 187 188 151 152
-85 157 126 127 208
-86 126 127 182 183
-87 182 183 152 153
-88 157 152 153 208
-89 203 127 204 128
-90 177 178 127 128
-91 154 177 178 153
-92 154 203 204 153
-93 198 199 128 129
-94 128 172 129 173
-95 154 155 172 173
-96 154 198 155 199
-97 193 194 129 130
-98 167 168 129 130
-99 155 156 167 168
-100 155 156 193 194
-101 188 189 130 131
-102 162 130 163 131
-103 156 105 162 163
-104 188 156 189 105
-105 1 2 103 104
-106 1 2 5 6
-107 5 6 9 10
-108 13 14 9 10
-109 13 14 17 18
-110 22 17 18 21
-111 22 25 26 21
-112 25 26 29 30
-113 33 34 29 30
-114 33 34 37 38
-115 37 38 41 42
-116 45 46 41 42
-117 45 46 49 50
-118 49 50 53 54
-119 57 58 53 54
-120 57 58 61 62
-121 66 61 62 65
-122 66 69 70 65
-123 69 70 73 74
-124 77 78 73 74
-125 77 78 81 82
-126 81 82 85 86
-127 89 90 85 86
-128 89 90 93 94
-129 93 94 97 98
-130 101 102 97 98
-131 101 3 102 4
-132 3 4 7 8
-133 11 12 7 8
-134 11 12 15 16
-135 15 16 19 20
-136 23 24 19 20
-137 23 24 27 28
-138 27 28 31 32
-139 35 36 31 32
-140 35 36 39 40
-141 44 39 40 43
-142 44 47 48 43
-143 47 48 51 52
-144 55 56 51 52
-145 55 56 59 60
-146 59 60 63 64
-147 67 68 63 64
-148 67 68 71 72
-149 71 72 75 76
-150 79 80 75 76
-151 79 80 83 84
-152 88 83 84 87
-153 88 91 92 87
-154 91 92 95 96
-155 99 100 95 96
-156 99 100 103 104
-157 88 2 3 85
-158 22 23 2 3
-159 22 23 42 43
-160 62 63 42 43
-161 82 83 62 63
-162 102 103 82 83
-163 102 103 18 19
-164 38 39 18 19
-165 58 59 38 39
-166 78 79 58 59
-167 99 78 79 98
-168 99 14 15 98
-169 34 35 14 15
-170 55 34 35 54
-171 55 74 75 54
-172 94 95 74 75
-173 11 94 95 10
-174 11 30 31 10
-175 50 51 30 31
-176 70 71 50 51
-177 90 91 70 71
-178 90 91 6 7
-179 26 27 6 7
-180 46 47 26 27
-181 66 67 46 47
-182 66 67 86 87
-183 1 4 86 87
-184 1 24 4 21
-185 44 24 41 21
-186 44 61 41 64
-187 81 61 84 64
-188 101 81 104 84
-189 101 104 17 20
-190 37 17 40 20
-191 57 37 60 40
-192 77 57 80 60
-193 77 100 80 97
-194 100 13 16 97
-195 33 13 36 16
-196 33 56 36 53
-197 56 73 53 76
-198 93 73 96 76
-199 12 93 96 9
-200 12 29 9 32
-201 49 29 52 32
-202 69 49 72 52
-203 89 69 92 72
-204 89 92 5 8
-205 25 5 28 8
-206 45 25 48 28
-207 45 68 48 65
-208 88 68 85 65
0