C4graphGraph forms for C4 [ 209, 1 ] = C_209(1,56)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 209, 1 ] = C_209(1,56).

(I) Following is a form readable by MAGMA:

g:=Graph<209|{ {2, 3}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {1, 2}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {1, 57}, {71, 127}, {70, 126}, {69, 125}, {68, 124}, {67, 123}, {66, 122}, {65, 121}, {64, 120}, {2, 58}, {3, 59}, {4, 60}, {5, 61}, {6, 62}, {7, 63}, {128, 184}, {129, 185}, {130, 186}, {131, 187}, {132, 188}, {133, 189}, {134, 190}, {135, 191}, {31, 32}, {159, 160}, {95, 96}, {8, 64}, {153, 209}, {152, 208}, {143, 199}, {142, 198}, {63, 119}, {62, 118}, {61, 117}, {60, 116}, {59, 115}, {58, 114}, {57, 113}, {56, 112}, {47, 103}, {46, 102}, {45, 101}, {44, 100}, {43, 99}, {42, 98}, {41, 97}, {9, 65}, {10, 66}, {11, 67}, {12, 68}, {13, 69}, {14, 70}, {15, 71}, {24, 80}, {25, 81}, {26, 82}, {27, 83}, {28, 84}, {29, 85}, {30, 86}, {31, 87}, {40, 96}, {136, 192}, {137, 193}, {138, 194}, {139, 195}, {140, 196}, {141, 197}, {16, 72}, {151, 207}, {150, 206}, {149, 205}, {148, 204}, {147, 203}, {146, 202}, {145, 201}, {144, 200}, {55, 111}, {54, 110}, {53, 109}, {52, 108}, {51, 107}, {50, 106}, {49, 105}, {48, 104}, {17, 73}, {18, 74}, {19, 75}, {20, 76}, {21, 77}, {22, 78}, {23, 79}, {32, 88}, {33, 89}, {34, 90}, {35, 91}, {36, 92}, {37, 93}, {38, 94}, {39, 95}, {63, 64}, {191, 192}, {2, 155}, {4, 157}, {6, 159}, {32, 185}, {34, 187}, {36, 189}, {38, 191}, {1, 154}, {5, 158}, {33, 186}, {37, 190}, {3, 156}, {35, 188}, {7, 160}, {15, 168}, {23, 176}, {31, 184}, {8, 161}, {10, 163}, {12, 165}, {14, 167}, {24, 177}, {26, 179}, {28, 181}, {30, 183}, {9, 162}, {13, 166}, {25, 178}, {29, 182}, {11, 164}, {27, 180}, {16, 169}, {18, 171}, {20, 173}, {22, 175}, {17, 170}, {21, 174}, {19, 172}, {72, 128}, {74, 130}, {73, 129}, {75, 131}, {76, 132}, {77, 133}, {78, 134}, {79, 135}, {88, 144}, {89, 145}, {90, 146}, {91, 147}, {92, 148}, {93, 149}, {94, 150}, {95, 151}, {104, 160}, {105, 161}, {106, 162}, {107, 163}, {108, 164}, {109, 165}, {110, 166}, {111, 167}, {120, 176}, {121, 177}, {122, 178}, {123, 179}, {124, 180}, {125, 181}, {126, 182}, {127, 183}, {1, 209}, {80, 136}, {81, 137}, {82, 138}, {83, 139}, {84, 140}, {85, 141}, {86, 142}, {87, 143}, {112, 168}, {113, 169}, {114, 170}, {115, 171}, {116, 172}, {117, 173}, {118, 174}, {119, 175}, {39, 192}, {55, 208}, {47, 200}, {40, 193}, {56, 209}, {46, 199}, {44, 197}, {42, 195}, {41, 194}, {45, 198}, {43, 196}, {96, 152}, {97, 153}, {98, 154}, {99, 155}, {100, 156}, {101, 157}, {102, 158}, {103, 159}, {48, 201}, {54, 207}, {52, 205}, {50, 203}, {49, 202}, {53, 206}, {51, 204}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209)
b: (2, 57)(3, 113)(4, 169)(5, 16)(6, 72)(7, 128)(8, 184)(9, 31)(10, 87)(11, 143)(12, 199)(13, 46)(14, 102)(15, 158)(17, 61)(18, 117)(19, 173)(21, 76)(22, 132)(23, 188)(24, 35)(25, 91)(26, 147)(27, 203)(28, 50)(29, 106)(30, 162)(32, 65)(33, 121)(34, 177)(36, 80)(37, 136)(38, 192)(40, 95)(41, 151)(42, 207)(43, 54)(44, 110)(45, 166)(47, 69)(48, 125)(49, 181)(51, 84)(52, 140)(53, 196)(55, 99)(56, 155)(59, 114)(60, 170)(62, 73)(63, 129)(64, 185)(66, 88)(67, 144)(68, 200)(70, 103)(71, 159)(74, 118)(75, 174)(78, 133)(79, 189)(81, 92)(82, 148)(83, 204)(85, 107)(86, 163)(89, 122)(90, 178)(93, 137)(94, 193)(97, 152)(98, 208)(100, 111)(101, 167)(104, 126)(105, 182)(108, 141)(109, 197)(112, 156)(116, 171)(119, 130)(120, 186)(123, 145)(124, 201)(127, 160)(131, 175)(135, 190)(138, 149)(139, 205)(142, 164)(146, 179)(150, 194)(154, 209)(157, 168)(161, 183)(165, 198)(176, 187)(180, 202)(195, 206)
c: (2, 154)(3, 98)(4, 42)(5, 195)(6, 139)(7, 83)(8, 27)(9, 180)(10, 124)(11, 68)(13, 165)(14, 109)(15, 53)(16, 206)(17, 150)(18, 94)(19, 38)(20, 191)(21, 135)(22, 79)(24, 176)(25, 120)(26, 64)(28, 161)(29, 105)(30, 49)(31, 202)(32, 146)(33, 90)(35, 187)(36, 131)(37, 75)(39, 172)(40, 116)(41, 60)(43, 157)(44, 101)(46, 198)(47, 142)(48, 86)(50, 183)(51, 127)(52, 71)(54, 168)(55, 112)(57, 209)(58, 153)(59, 97)(61, 194)(62, 138)(63, 82)(65, 179)(66, 123)(69, 164)(70, 108)(72, 205)(73, 149)(74, 93)(76, 190)(77, 134)(80, 175)(81, 119)(84, 160)(85, 104)(87, 201)(88, 145)(91, 186)(92, 130)(95, 171)(96, 115)(99, 156)(102, 197)(103, 141)(106, 182)(107, 126)(110, 167)(113, 208)(114, 152)(117, 193)(118, 137)(121, 178)(125, 163)(128, 204)(129, 148)(132, 189)(136, 174)(140, 159)(143, 200)(147, 185)(151, 170)(158, 196)(162, 181)(169, 207)(173, 192)(184, 203)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 209, 1 ]
209
-1 154 209 2 57
-2 1 155 3 58
-3 2 156 4 59
-4 3 157 5 60
-5 4 158 6 61
-6 5 159 7 62
-7 6 160 8 63
-8 7 161 9 64
-9 8 162 10 65
-10 11 66 9 163
-11 12 67 10 164
-12 11 165 13 68
-13 12 166 14 69
-14 13 167 15 70
-15 14 168 16 71
-16 15 169 17 72
-17 16 170 18 73
-18 17 171 19 74
-19 18 172 20 75
-20 19 173 21 76
-21 22 77 20 174
-22 23 78 21 175
-23 22 176 24 79
-24 23 177 25 80
-25 24 178 26 81
-26 25 179 27 82
-27 26 180 28 83
-28 27 181 29 84
-29 28 182 30 85
-30 29 183 31 86
-31 30 184 32 87
-32 33 88 31 185
-33 34 89 32 186
-34 33 187 35 90
-35 34 188 36 91
-36 35 189 37 92
-37 36 190 38 93
-38 37 191 39 94
-39 38 192 40 95
-40 39 193 41 96
-41 40 194 42 97
-42 41 195 43 98
-43 44 99 42 196
-44 45 100 43 197
-45 44 198 46 101
-46 45 199 47 102
-47 46 200 48 103
-48 47 201 49 104
-49 48 202 50 105
-50 49 203 51 106
-51 50 204 52 107
-52 51 205 53 108
-53 52 206 54 109
-54 55 110 53 207
-55 56 111 54 208
-56 55 209 57 112
-57 1 56 58 113
-58 2 57 59 114
-59 3 58 60 115
-60 4 59 61 116
-61 5 60 62 117
-62 6 61 63 118
-63 7 62 64 119
-64 8 63 65 120
-65 66 121 9 64
-66 67 122 10 65
-67 11 66 68 123
-68 12 67 69 124
-69 13 68 70 125
-70 14 69 71 126
-71 15 70 72 127
-72 16 71 73 128
-73 17 72 74 129
-74 18 73 75 130
-75 19 74 76 131
-76 77 132 20 75
-77 78 133 21 76
-78 22 77 79 134
-79 23 78 80 135
-80 24 79 81 136
-81 25 80 82 137
-82 26 81 83 138
-83 27 82 84 139
-84 28 83 85 140
-85 29 84 86 141
-86 30 85 87 142
-87 88 143 31 86
-88 89 144 32 87
-89 33 88 90 145
-90 34 89 91 146
-91 35 90 92 147
-92 36 91 93 148
-93 37 92 94 149
-94 38 93 95 150
-95 39 94 96 151
-96 40 95 97 152
-97 41 96 98 153
-98 99 154 42 97
-99 100 155 43 98
-100 44 99 101 156
-101 45 100 102 157
-102 46 101 103 158
-103 47 102 104 159
-104 48 103 105 160
-105 49 104 106 161
-106 50 105 107 162
-107 51 106 108 163
-108 52 107 109 164
-109 110 165 53 108
-110 111 166 54 109
-111 55 110 112 167
-112 56 111 113 168
-113 57 112 114 169
-114 58 113 115 170
-115 59 114 116 171
-116 60 115 117 172
-117 61 116 118 173
-118 62 117 119 174
-119 63 118 120 175
-120 121 176 64 119
-121 122 177 65 120
-122 66 121 123 178
-123 67 122 124 179
-124 68 123 125 180
-125 69 124 126 181
-126 70 125 127 182
-127 71 126 128 183
-128 72 127 129 184
-129 73 128 130 185
-130 74 129 131 186
-131 132 187 75 130
-132 133 188 76 131
-133 77 132 134 189
-134 78 133 135 190
-135 79 134 136 191
-136 80 135 137 192
-137 81 136 138 193
-138 82 137 139 194
-139 83 138 140 195
-140 84 139 141 196
-141 85 140 142 197
-142 143 198 86 141
-143 144 199 87 142
-144 88 143 145 200
-145 89 144 146 201
-146 90 145 147 202
-147 91 146 148 203
-148 92 147 149 204
-149 93 148 150 205
-150 94 149 151 206
-151 95 150 152 207
-152 96 151 153 208
-153 154 209 97 152
-154 1 155 98 153
-155 99 154 2 156
-156 100 155 3 157
-157 101 156 4 158
-158 102 157 5 159
-159 103 158 6 160
-160 104 159 7 161
-161 105 160 8 162
-162 106 161 9 163
-163 107 162 10 164
-164 11 165 108 163
-165 12 166 109 164
-166 110 165 13 167
-167 111 166 14 168
-168 112 167 15 169
-169 113 168 16 170
-170 114 169 17 171
-171 115 170 18 172
-172 116 171 19 173
-173 117 172 20 174
-174 118 173 21 175
-175 22 176 119 174
-176 23 177 120 175
-177 121 176 24 178
-178 122 177 25 179
-179 123 178 26 180
-180 124 179 27 181
-181 125 180 28 182
-182 126 181 29 183
-183 127 182 30 184
-184 128 183 31 185
-185 129 184 32 186
-186 33 187 130 185
-187 34 188 131 186
-188 132 187 35 189
-189 133 188 36 190
-190 134 189 37 191
-191 135 190 38 192
-192 136 191 39 193
-193 137 192 40 194
-194 138 193 41 195
-195 139 194 42 196
-196 140 195 43 197
-197 44 198 141 196
-198 45 199 142 197
-199 143 198 46 200
-200 144 199 47 201
-201 145 200 48 202
-202 146 201 49 203
-203 147 202 50 204
-204 148 203 51 205
-205 149 204 52 206
-206 150 205 53 207
-207 151 206 54 208
-208 55 209 152 207
-209 1 56 153 208
0

**************