[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 210, 1 ] =
W(105,2).
(I) Following is a form readable by MAGMA:
g:=Graph<210|{ {2, 3}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200,
201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189},
{186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174,
175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163},
{160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148,
149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137},
{134, 135}, {132, 133}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58,
59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42,
43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19},
{20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35},
{36, 37}, {38, 39}, {40, 41}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79},
{80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95},
{96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109},
{110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122,
123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {1, 2}, {209, 210}, {205,
206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182},
{177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153,
154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {65, 66}, {61,
62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17,
18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {69, 70}, {73,
74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102},
{105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129,
130}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163,
164}, {155, 156}, {147, 148}, {139, 140}, {67, 68}, {59, 60}, {51, 52}, {43,
44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99,
100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {199, 200}, {183,
184}, {167, 168}, {151, 152}, {135, 136}, {55, 56}, {23, 24}, {39, 40}, {71,
72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {207, 208}, {175, 176}, {143,
144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {1, 105},
{2, 106}, {3, 107}, {4, 108}, {5, 109}, {6, 110}, {7, 111}, {16, 120}, {17,
121}, {18, 122}, {19, 123}, {20, 124}, {21, 125}, {22, 126}, {23, 127}, {1,
107}, {4, 110}, {5, 111}, {16, 122}, {17, 123}, {20, 126}, {21, 127}, {2, 108},
{3, 109}, {18, 124}, {19, 125}, {6, 112}, {7, 113}, {14, 120}, {15, 121}, {8,
112}, {9, 113}, {10, 114}, {11, 115}, {12, 116}, {13, 117}, {14, 118}, {15,
119}, {8, 114}, {9, 115}, {12, 118}, {13, 119}, {10, 116}, {11, 117}, {63, 64},
{191, 192}, {22, 128}, {63, 169}, {62, 168}, {55, 161}, {54, 160}, {23, 129},
{30, 136}, {31, 137}, {86, 192}, {87, 193}, {94, 200}, {95, 201}, {24, 128},
{63, 167}, {62, 166}, {61, 165}, {60, 164}, {59, 163}, {58, 162}, {57, 161},
{56, 160}, {25, 129}, {26, 130}, {27, 131}, {28, 132}, {29, 133}, {30, 134},
{31, 135}, {88, 192}, {89, 193}, {90, 194}, {91, 195}, {92, 196}, {93, 197},
{94, 198}, {95, 199}, {24, 130}, {61, 167}, {60, 166}, {57, 163}, {56, 162},
{25, 131}, {28, 134}, {29, 135}, {88, 194}, {89, 195}, {92, 198}, {93, 199},
{26, 132}, {59, 165}, {58, 164}, {27, 133}, {90, 196}, {91, 197}, {32, 136},
{55, 159}, {54, 158}, {53, 157}, {52, 156}, {51, 155}, {50, 154}, {49, 153},
{48, 152}, {33, 137}, {34, 138}, {35, 139}, {36, 140}, {37, 141}, {38, 142},
{39, 143}, {96, 200}, {97, 201}, {98, 202}, {99, 203}, {100, 204}, {101, 205},
{102, 206}, {103, 207}, {32, 138}, {53, 159}, {52, 158}, {49, 155}, {48, 154},
{33, 139}, {36, 142}, {37, 143}, {96, 202}, {97, 203}, {100, 206}, {101, 207},
{34, 140}, {51, 157}, {50, 156}, {35, 141}, {98, 204}, {99, 205}, {38, 144},
{47, 153}, {46, 152}, {39, 145}, {102, 208}, {103, 209}, {40, 144}, {47, 151},
{46, 150}, {45, 149}, {44, 148}, {43, 147}, {42, 146}, {41, 145}, {104, 208},
{105, 209}, {106, 210}, {40, 146}, {45, 151}, {44, 150}, {41, 147}, {104, 210},
{42, 148}, {43, 149}, {1, 210}, {64, 168}, {68, 172}, {67, 171}, {66, 170}, {65,
169}, {69, 173}, {70, 174}, {71, 175}, {80, 184}, {81, 185}, {82, 186}, {83,
187}, {84, 188}, {85, 189}, {86, 190}, {87, 191}, {64, 170}, {65, 171}, {68,
174}, {69, 175}, {80, 186}, {81, 187}, {84, 190}, {85, 191}, {66, 172}, {67,
173}, {82, 188}, {83, 189}, {70, 176}, {71, 177}, {78, 184}, {79, 185}, {72,
176}, {73, 177}, {74, 178}, {75, 179}, {76, 180}, {77, 181}, {78, 182}, {79,
183}, {72, 178}, {73, 179}, {76, 182}, {77, 183}, {74, 180}, {75, 181}, {127,
128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (50, 155) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (65, 170)
c: (85, 190)
d: (17, 122)
e: (36, 141)
f: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105)(106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210)
g: (26, 131)
h: (103, 208)
m: (3, 108)
n1: (37, 142)
a1: (41, 146)
b1: (30, 135)
c1: (8, 113)
d1: (20, 125)
e1: (78, 183)
f1: (53, 158)
g1: (24, 129)
h1: (62, 167)
m1: (75, 180)
n2: (7, 112)
a2: (43, 148)
b2: (105, 210)
c2: (34, 139)
d2: (40, 145)
e2: (21, 126)
f2: (84, 189)
g2: (74, 179)
h2: (63, 168)
m2: (101, 206)
n3: (39, 144)
a3: (89, 194)
b3: (27, 132)
c3: (88, 193)
d3: (35, 140)
e3: (97, 202)
f3: (32, 137)
g3: (56, 161)
h3: (64, 169)
m3: (81, 186)
n4: (95, 200)
a4: (29, 134)
b4: (51, 156)
c4: (92, 197)
d4: (11, 116)
e4: (18, 123)
f4: (61, 166)
g4: (2, 107)
h4: (71, 176)
m4: (99, 204)
n5: (98, 203)
a5: (33, 138)
b5: (66, 171)
c5: (58, 163)
d5: (100, 205)
e5: (87, 192)
f5: (86, 191)
g5: (42, 147)
h5: (28, 133)
m5: (46, 151)
n6: (22, 127)
a6: (14, 119)
b6: (16, 121)
c6: (48, 153)
d6: (2, 105)(3, 104)(4, 103)(5, 102)(6, 101)(7, 100)(8, 99)(9, 98)(10, 97)(11,
96)(12, 95)(13, 94)(14, 93)(15, 92)(16, 91)(17, 90)(18, 89)(19, 88)(20, 87)(21,
86)(22, 85)(23, 84)(24, 83)(25, 82)(26, 81)(27, 80)(28, 79)(29, 78)(30, 77)(31,
76)(32, 75)(33, 74)(34, 73)(35, 72)(36, 71)(37, 70)(38, 69)(39, 68)(40, 67)(41,
66)(42, 65)(43, 64)(44, 63)(45, 62)(46, 61)(47, 60)(48, 59)(49, 58)(50, 57)(51,
56)(52, 55)(53, 54)(107, 210)(108, 209)(109, 208)(110, 207)(111, 206)(112,
205)(113, 204)(114, 203)(115, 202)(116, 201)(117, 200)(118, 199)(119, 198)(120,
197)(121, 196)(122, 195)(123, 194)(124, 193)(125, 192)(126, 191)(127, 190)(128,
189)(129, 188)(130, 187)(131, 186)(132, 185)(133, 184)(134, 183)(135, 182)(136,
181)(137, 180)(138, 179)(139, 178)(140, 177)(141, 176)(142, 175)(143, 174)(144,
173)(145, 172)(146, 171)(147, 170)(148, 169)(149, 168)(150, 167)(151, 166)(152,
165)(153, 164)(154, 163)(155, 162)(156, 161)(157, 160)(158, 159)
e6: (4, 109)
f6: (15, 120)
g6: (104, 209)
h6: (54, 159)
m6: (6, 111)
n7: (102, 207)
a7: (12, 117)
b7: (68, 173)
c7: (57, 162)
d7: (45, 150)
e7: (70, 175)
f7: (93, 198)
g7: (31, 136)
h7: (44, 149)
m7: (9, 114)
n8: (23, 128)
a8: (77, 182)
b8: (60, 165)
c8: (90, 195)
d8: (94, 199)
e8: (69, 174)
f8: (83, 188)
g8: (67, 172)
h8: (47, 152)
m8: (82, 187)
n9: (38, 143)
a9: (80, 185)
b9: (13, 118)
c9: (91, 196)
d9: (25, 130)
e9: (72, 177)
f9: (79, 184)
g9: (59, 164)
h9: (10, 115)
m9: (55, 160)
n10: (49, 154)
a10: (5, 110)
b10: (19, 124)
c10: (73, 178)
d10: (76, 181)
e10: (96, 201)
C4[ 210, 1 ]
210
-1 210 2 105 107
-2 1 3 106 108
-3 2 4 107 109
-4 110 3 5 108
-5 111 4 6 109
-6 110 112 5 7
-7 111 113 6 8
-8 112 114 7 9
-9 113 115 8 10
-10 11 114 116 9
-11 12 115 117 10
-12 11 13 116 118
-13 12 14 117 119
-14 13 15 118 120
-15 121 14 16 119
-16 122 15 17 120
-17 121 123 16 18
-18 122 124 17 19
-19 123 125 18 20
-20 124 126 19 21
-21 22 125 127 20
-22 23 126 128 21
-23 22 24 127 129
-24 23 25 128 130
-25 24 26 129 131
-26 132 25 27 130
-27 133 26 28 131
-28 132 134 27 29
-29 133 135 28 30
-30 134 136 29 31
-31 135 137 30 32
-32 33 136 138 31
-33 34 137 139 32
-34 33 35 138 140
-35 34 36 139 141
-36 35 37 140 142
-37 143 36 38 141
-38 144 37 39 142
-39 143 145 38 40
-40 144 146 39 41
-41 145 147 40 42
-42 146 148 41 43
-43 44 147 149 42
-44 45 148 150 43
-45 44 46 149 151
-46 45 47 150 152
-47 46 48 151 153
-48 154 47 49 152
-49 155 48 50 153
-50 154 156 49 51
-51 155 157 50 52
-52 156 158 51 53
-53 157 159 52 54
-54 55 158 160 53
-55 56 159 161 54
-56 55 57 160 162
-57 56 58 161 163
-58 57 59 162 164
-59 165 58 60 163
-60 166 59 61 164
-61 165 167 60 62
-62 166 168 61 63
-63 167 169 62 64
-64 168 170 63 65
-65 66 169 171 64
-66 67 170 172 65
-67 66 68 171 173
-68 67 69 172 174
-69 68 70 173 175
-70 176 69 71 174
-71 177 70 72 175
-72 176 178 71 73
-73 177 179 72 74
-74 178 180 73 75
-75 179 181 74 76
-76 77 180 182 75
-77 78 181 183 76
-78 77 79 182 184
-79 78 80 183 185
-80 79 81 184 186
-81 187 80 82 185
-82 188 81 83 186
-83 187 189 82 84
-84 188 190 83 85
-85 189 191 84 86
-86 190 192 85 87
-87 88 191 193 86
-88 89 192 194 87
-89 88 90 193 195
-90 89 91 194 196
-91 90 92 195 197
-92 198 91 93 196
-93 199 92 94 197
-94 198 200 93 95
-95 199 201 94 96
-96 200 202 95 97
-97 201 203 96 98
-98 99 202 204 97
-99 100 203 205 98
-100 99 101 204 206
-101 100 102 205 207
-102 101 103 206 208
-103 209 102 104 207
-104 210 103 105 208
-105 209 1 104 106
-106 210 2 105 107
-107 1 3 106 108
-108 2 4 107 109
-109 110 3 5 108
-110 111 4 6 109
-111 110 112 5 7
-112 111 113 6 8
-113 112 114 7 9
-114 113 115 8 10
-115 11 114 116 9
-116 12 115 117 10
-117 11 13 116 118
-118 12 14 117 119
-119 13 15 118 120
-120 121 14 16 119
-121 122 15 17 120
-122 121 123 16 18
-123 122 124 17 19
-124 123 125 18 20
-125 124 126 19 21
-126 22 125 127 20
-127 23 126 128 21
-128 22 24 127 129
-129 23 25 128 130
-130 24 26 129 131
-131 132 25 27 130
-132 133 26 28 131
-133 132 134 27 29
-134 133 135 28 30
-135 134 136 29 31
-136 135 137 30 32
-137 33 136 138 31
-138 34 137 139 32
-139 33 35 138 140
-140 34 36 139 141
-141 35 37 140 142
-142 143 36 38 141
-143 144 37 39 142
-144 143 145 38 40
-145 144 146 39 41
-146 145 147 40 42
-147 146 148 41 43
-148 44 147 149 42
-149 45 148 150 43
-150 44 46 149 151
-151 45 47 150 152
-152 46 48 151 153
-153 154 47 49 152
-154 155 48 50 153
-155 154 156 49 51
-156 155 157 50 52
-157 156 158 51 53
-158 157 159 52 54
-159 55 158 160 53
-160 56 159 161 54
-161 55 57 160 162
-162 56 58 161 163
-163 57 59 162 164
-164 165 58 60 163
-165 166 59 61 164
-166 165 167 60 62
-167 166 168 61 63
-168 167 169 62 64
-169 168 170 63 65
-170 66 169 171 64
-171 67 170 172 65
-172 66 68 171 173
-173 67 69 172 174
-174 68 70 173 175
-175 176 69 71 174
-176 177 70 72 175
-177 176 178 71 73
-178 177 179 72 74
-179 178 180 73 75
-180 179 181 74 76
-181 77 180 182 75
-182 78 181 183 76
-183 77 79 182 184
-184 78 80 183 185
-185 79 81 184 186
-186 187 80 82 185
-187 188 81 83 186
-188 187 189 82 84
-189 188 190 83 85
-190 189 191 84 86
-191 190 192 85 87
-192 88 191 193 86
-193 89 192 194 87
-194 88 90 193 195
-195 89 91 194 196
-196 90 92 195 197
-197 198 91 93 196
-198 199 92 94 197
-199 198 200 93 95
-200 199 201 94 96
-201 200 202 95 97
-202 201 203 96 98
-203 99 202 204 97
-204 100 203 205 98
-205 99 101 204 206
-206 100 102 205 207
-207 101 103 206 208
-208 209 102 104 207
-209 210 103 105 208
-210 209 1 104 106
0