[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 210, 2 ] =
C_210(1,29).
(I) Following is a form readable by MAGMA:
g:=Graph<210|{ {2, 3}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200,
201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189},
{186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174,
175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163},
{90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77},
{74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61},
{58, 59}, {56, 57}, {54, 55}, {52, 53}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12,
13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28,
29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44,
45}, {46, 47}, {48, 49}, {50, 51}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100,
101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113},
{114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126,
127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139},
{140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152,
153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {1, 2}, {209, 210}, {205,
206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182},
{177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {89, 90}, {85, 86},
{81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54},
{5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34},
{37, 38}, {41, 42}, {45, 46}, {49, 50}, {93, 94}, {97, 98}, {101, 102}, {105,
106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130},
{133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157,
158}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163,
164}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35,
36}, {43, 44}, {51, 52}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123,
124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {199, 200}, {183,
184}, {167, 168}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {103, 104},
{119, 120}, {135, 136}, {151, 152}, {2, 31}, {162, 191}, {160, 189}, {66, 95},
{64, 93}, {32, 61}, {34, 63}, {96, 125}, {98, 127}, {128, 157}, {130, 159}, {1,
30}, {207, 208}, {175, 176}, {161, 190}, {79, 80}, {65, 94}, {15, 16}, {33, 62},
{47, 48}, {97, 126}, {111, 112}, {129, 158}, {143, 144}, {3, 32}, {87, 116},
{83, 112}, {79, 108}, {75, 104}, {71, 100}, {67, 96}, {7, 36}, {11, 40}, {15,
44}, {19, 48}, {23, 52}, {27, 56}, {31, 60}, {91, 120}, {95, 124}, {131, 160},
{135, 164}, {139, 168}, {143, 172}, {147, 176}, {151, 180}, {155, 184}, {159,
188}, {4, 33}, {86, 115}, {84, 113}, {78, 107}, {76, 105}, {70, 99}, {68, 97},
{6, 35}, {12, 41}, {14, 43}, {20, 49}, {22, 51}, {28, 57}, {30, 59}, {92, 121},
{94, 123}, {132, 161}, {134, 163}, {140, 169}, {142, 171}, {148, 177}, {150,
179}, {156, 185}, {158, 187}, {5, 34}, {85, 114}, {77, 106}, {69, 98}, {13, 42},
{21, 50}, {29, 58}, {93, 122}, {133, 162}, {141, 170}, {149, 178}, {157, 186},
{8, 37}, {88, 117}, {74, 103}, {72, 101}, {10, 39}, {24, 53}, {26, 55}, {90,
119}, {136, 165}, {138, 167}, {152, 181}, {154, 183}, {9, 38}, {89, 118}, {73,
102}, {25, 54}, {137, 166}, {153, 182}, {16, 45}, {82, 111}, {80, 109}, {18,
47}, {144, 173}, {146, 175}, {17, 46}, {81, 110}, {31, 32}, {95, 96}, {145,
174}, {159, 160}, {35, 64}, {179, 208}, {175, 204}, {171, 200}, {167, 196},
{163, 192}, {63, 92}, {59, 88}, {55, 84}, {39, 68}, {43, 72}, {47, 76}, {51,
80}, {36, 65}, {180, 209}, {174, 203}, {172, 201}, {166, 195}, {164, 193}, {62,
91}, {60, 89}, {54, 83}, {52, 81}, {38, 67}, {44, 73}, {46, 75}, {37, 66}, {181,
210}, {173, 202}, {165, 194}, {61, 90}, {53, 82}, {45, 74}, {40, 69}, {170,
199}, {168, 197}, {58, 87}, {56, 85}, {42, 71}, {41, 70}, {169, 198}, {57, 86},
{48, 77}, {178, 207}, {176, 205}, {50, 79}, {49, 78}, {191, 192}, {177, 206},
{63, 64}, {2, 183}, {8, 189}, {10, 191}, {1, 182}, {9, 190}, {3, 184}, {7, 188},
{4, 185}, {6, 187}, {5, 186}, {11, 192}, {15, 196}, {27, 208}, {12, 193}, {14,
195}, {28, 209}, {13, 194}, {29, 210}, {1, 210}, {16, 197}, {18, 199}, {24,
205}, {26, 207}, {17, 198}, {25, 206}, {19, 200}, {23, 204}, {20, 201}, {22,
203}, {21, 202}, {99, 128}, {103, 132}, {107, 136}, {111, 140}, {115, 144},
{119, 148}, {123, 152}, {127, 156}, {100, 129}, {102, 131}, {108, 137}, {110,
139}, {116, 145}, {118, 147}, {124, 153}, {126, 155}, {101, 130}, {109, 138},
{117, 146}, {125, 154}, {104, 133}, {106, 135}, {120, 149}, {122, 151}, {105,
134}, {121, 150}, {112, 141}, {114, 143}, {113, 142}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 182)(3, 153)(4, 124)(5, 95)(6, 66)(7, 37)(9, 189)(10, 160)(11, 131)(12,
102)(13, 73)(14, 44)(16, 196)(17, 167)(18, 138)(19, 109)(20, 80)(21, 51)(23,
203)(24, 174)(25, 145)(26, 116)(27, 87)(28, 58)(30, 210)(31, 181)(32, 152)(33,
123)(34, 94)(35, 65)(38, 188)(39, 159)(40, 130)(41, 101)(42, 72)(45, 195)(46,
166)(47, 137)(48, 108)(49, 79)(52, 202)(53, 173)(54, 144)(55, 115)(56, 86)(59,
209)(60, 180)(61, 151)(62, 122)(63, 93)(67, 187)(68, 158)(69, 129)(70, 100)(74,
194)(75, 165)(76, 136)(77, 107)(81, 201)(82, 172)(83, 143)(84, 114)(88, 208)(89,
179)(90, 150)(91, 121)(96, 186)(97, 157)(98, 128)(103, 193)(104, 164)(105,
135)(110, 200)(111, 171)(112, 142)(117, 207)(118, 178)(119, 149)(125, 185)(126,
156)(132, 192)(133, 163)(139, 199)(140, 170)(146, 206)(147, 177)(154, 184)(161,
191)(168, 198)(175, 205) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210)
c: (2, 30)(3, 59)(4, 88)(5, 117)(6, 146)(7, 175)(8, 204)(9, 23)(10, 52)(11,
81)(12, 110)(13, 139)(14, 168)(15, 197)(17, 45)(18, 74)(19, 103)(20, 132)(21,
161)(22, 190)(24, 38)(25, 67)(26, 96)(27, 125)(28, 154)(29, 183)(32, 60)(33,
89)(34, 118)(35, 147)(36, 176)(37, 205)(39, 53)(40, 82)(41, 111)(42, 140)(43,
169)(44, 198)(47, 75)(48, 104)(49, 133)(50, 162)(51, 191)(54, 68)(55, 97)(56,
126)(57, 155)(58, 184)(62, 90)(63, 119)(64, 148)(65, 177)(66, 206)(69, 83)(70,
112)(71, 141)(72, 170)(73, 199)(77, 105)(78, 134)(79, 163)(80, 192)(84, 98)(85,
127)(86, 156)(87, 185)(92, 120)(93, 149)(94, 178)(95, 207)(99, 113)(100,
142)(101, 171)(102, 200)(107, 135)(108, 164)(109, 193)(114, 128)(115, 157)(116,
186)(122, 150)(123, 179)(124, 208)(129, 143)(130, 172)(131, 201)(137, 165)(138,
194)(144, 158)(145, 187)(152, 180)(153, 209)(159, 173)(160, 202)(167, 195)(174,
188)(182, 210)(189, 203)
C4[ 210, 2 ]
210
-1 210 2 182 30
-2 1 3 183 31
-3 2 4 184 32
-4 33 3 5 185
-5 34 4 6 186
-6 187 35 5 7
-7 188 36 6 8
-8 189 37 7 9
-9 190 38 8 10
-10 11 191 39 9
-11 12 192 40 10
-12 11 13 193 41
-13 12 14 194 42
-14 13 15 195 43
-15 44 14 16 196
-16 45 15 17 197
-17 198 46 16 18
-18 199 47 17 19
-19 200 48 18 20
-20 201 49 19 21
-21 22 202 50 20
-22 23 203 51 21
-23 22 24 204 52
-24 23 25 205 53
-25 24 26 206 54
-26 55 25 27 207
-27 56 26 28 208
-28 209 57 27 29
-29 210 58 28 30
-30 1 59 29 31
-31 2 60 30 32
-32 33 3 61 31
-33 34 4 62 32
-34 33 35 5 63
-35 34 36 6 64
-36 35 37 7 65
-37 66 36 38 8
-38 67 37 39 9
-39 68 38 40 10
-40 11 69 39 41
-41 12 70 40 42
-42 13 71 41 43
-43 44 14 72 42
-44 45 15 73 43
-45 44 46 16 74
-46 45 47 17 75
-47 46 48 18 76
-48 77 47 49 19
-49 78 48 50 20
-50 79 49 51 21
-51 22 80 50 52
-52 23 81 51 53
-53 24 82 52 54
-54 55 25 83 53
-55 56 26 84 54
-56 55 57 27 85
-57 56 58 28 86
-58 57 59 29 87
-59 88 58 60 30
-60 89 59 61 31
-61 90 60 62 32
-62 33 91 61 63
-63 34 92 62 64
-64 35 93 63 65
-65 66 36 94 64
-66 67 37 95 65
-67 66 68 38 96
-68 67 69 39 97
-69 68 70 40 98
-70 99 69 71 41
-71 100 70 72 42
-72 101 71 73 43
-73 44 102 72 74
-74 45 103 73 75
-75 46 104 74 76
-76 77 47 105 75
-77 78 48 106 76
-78 77 79 49 107
-79 78 80 50 108
-80 79 81 51 109
-81 110 80 82 52
-82 111 81 83 53
-83 112 82 84 54
-84 55 113 83 85
-85 56 114 84 86
-86 57 115 85 87
-87 88 58 116 86
-88 89 59 117 87
-89 88 90 60 118
-90 89 91 61 119
-91 90 92 62 120
-92 121 91 93 63
-93 122 92 94 64
-94 123 93 95 65
-95 66 124 94 96
-96 67 125 95 97
-97 68 126 96 98
-98 99 69 127 97
-99 100 70 128 98
-100 99 101 71 129
-101 100 102 72 130
-102 101 103 73 131
-103 132 102 104 74
-104 133 103 105 75
-105 134 104 106 76
-106 77 135 105 107
-107 78 136 106 108
-108 79 137 107 109
-109 110 80 138 108
-110 111 81 139 109
-111 110 112 82 140
-112 111 113 83 141
-113 112 114 84 142
-114 143 113 115 85
-115 144 114 116 86
-116 145 115 117 87
-117 88 146 116 118
-118 89 147 117 119
-119 90 148 118 120
-120 121 91 149 119
-121 122 92 150 120
-122 121 123 93 151
-123 122 124 94 152
-124 123 125 95 153
-125 154 124 126 96
-126 155 125 127 97
-127 156 126 128 98
-128 99 157 127 129
-129 100 158 128 130
-130 101 159 129 131
-131 132 102 160 130
-132 133 103 161 131
-133 132 134 104 162
-134 133 135 105 163
-135 134 136 106 164
-136 165 135 137 107
-137 166 136 138 108
-138 167 137 139 109
-139 110 168 138 140
-140 111 169 139 141
-141 112 170 140 142
-142 143 113 171 141
-143 144 114 172 142
-144 143 145 115 173
-145 144 146 116 174
-146 145 147 117 175
-147 176 146 148 118
-148 177 147 149 119
-149 178 148 150 120
-150 121 179 149 151
-151 122 180 150 152
-152 123 181 151 153
-153 154 124 182 152
-154 155 125 183 153
-155 154 156 126 184
-156 155 157 127 185
-157 156 158 128 186
-158 187 157 159 129
-159 188 158 160 130
-160 189 159 161 131
-161 132 190 160 162
-162 133 191 161 163
-163 134 192 162 164
-164 165 135 193 163
-165 166 136 194 164
-166 165 167 137 195
-167 166 168 138 196
-168 167 169 139 197
-169 198 168 170 140
-170 199 169 171 141
-171 200 170 172 142
-172 143 201 171 173
-173 144 202 172 174
-174 145 203 173 175
-175 176 146 204 174
-176 177 147 205 175
-177 176 178 148 206
-178 177 179 149 207
-179 178 180 150 208
-180 209 179 181 151
-181 210 180 182 152
-182 1 181 183 153
-183 154 2 182 184
-184 155 3 183 185
-185 156 4 184 186
-186 187 157 5 185
-187 188 158 6 186
-188 187 189 159 7
-189 188 190 160 8
-190 189 191 161 9
-191 190 192 162 10
-192 11 191 193 163
-193 12 192 194 164
-194 165 13 193 195
-195 166 14 194 196
-196 167 15 195 197
-197 198 168 16 196
-198 199 169 17 197
-199 198 200 170 18
-200 199 201 171 19
-201 200 202 172 20
-202 201 203 173 21
-203 22 202 204 174
-204 23 203 205 175
-205 176 24 204 206
-206 177 25 205 207
-207 178 26 206 208
-208 209 179 27 207
-209 210 180 28 208
-210 209 1 181 29
0