C4graphGraph forms for C4 [ 210, 4 ] = C_210(1,71)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 210, 4 ] = C_210(1,71).

(I) Following is a form readable by MAGMA:

g:=Graph<210|{ {2, 3}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {1, 2}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {3, 4}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {8, 79}, {56, 127}, {48, 119}, {16, 87}, {24, 95}, {32, 103}, {40, 111}, {128, 199}, {136, 207}, {1, 72}, {55, 126}, {53, 124}, {51, 122}, {49, 120}, {3, 74}, {5, 76}, {7, 78}, {17, 88}, {19, 90}, {21, 92}, {23, 94}, {33, 104}, {35, 106}, {37, 108}, {39, 110}, {129, 200}, {131, 202}, {133, 204}, {135, 206}, {2, 73}, {54, 125}, {50, 121}, {6, 77}, {18, 89}, {22, 93}, {34, 105}, {38, 109}, {130, 201}, {134, 205}, {4, 75}, {52, 123}, {20, 91}, {36, 107}, {132, 203}, {9, 80}, {47, 118}, {45, 116}, {43, 114}, {11, 82}, {13, 84}, {15, 86}, {41, 112}, {137, 208}, {139, 210}, {10, 81}, {46, 117}, {14, 85}, {42, 113}, {138, 209}, {12, 83}, {44, 115}, {25, 96}, {27, 98}, {29, 100}, {31, 102}, {26, 97}, {30, 101}, {28, 99}, {191, 192}, {63, 64}, {4, 143}, {68, 207}, {64, 203}, {52, 191}, {48, 187}, {16, 155}, {20, 159}, {32, 171}, {36, 175}, {1, 140}, {67, 206}, {65, 204}, {51, 190}, {49, 188}, {3, 142}, {17, 156}, {19, 158}, {33, 172}, {35, 174}, {2, 141}, {66, 205}, {50, 189}, {18, 157}, {34, 173}, {5, 144}, {71, 210}, {69, 208}, {47, 186}, {45, 184}, {7, 146}, {13, 152}, {15, 154}, {37, 176}, {39, 178}, {6, 145}, {70, 209}, {46, 185}, {14, 153}, {38, 177}, {8, 147}, {44, 183}, {12, 151}, {40, 179}, {9, 148}, {43, 182}, {11, 150}, {41, 180}, {10, 149}, {42, 181}, {21, 160}, {23, 162}, {29, 168}, {31, 170}, {22, 161}, {30, 169}, {57, 128}, {63, 134}, {61, 132}, {59, 130}, {121, 192}, {123, 194}, {125, 196}, {127, 198}, {24, 163}, {62, 133}, {58, 129}, {28, 167}, {122, 193}, {126, 197}, {25, 164}, {27, 166}, {26, 165}, {60, 131}, {124, 195}, {64, 135}, {72, 143}, {80, 151}, {88, 159}, {96, 167}, {104, 175}, {112, 183}, {120, 191}, {65, 136}, {71, 142}, {69, 140}, {67, 138}, {81, 152}, {83, 154}, {85, 156}, {87, 158}, {97, 168}, {99, 170}, {101, 172}, {103, 174}, {113, 184}, {115, 186}, {117, 188}, {119, 190}, {66, 137}, {70, 141}, {82, 153}, {86, 157}, {98, 169}, {102, 173}, {114, 185}, {118, 189}, {68, 139}, {84, 155}, {100, 171}, {116, 187}, {1, 210}, {73, 144}, {75, 146}, {77, 148}, {79, 150}, {105, 176}, {107, 178}, {109, 180}, {111, 182}, {74, 145}, {78, 149}, {106, 177}, {110, 181}, {76, 147}, {108, 179}, {53, 192}, {63, 202}, {61, 200}, {55, 194}, {54, 193}, {62, 201}, {89, 160}, {91, 162}, {93, 164}, {95, 166}, {56, 195}, {60, 199}, {90, 161}, {94, 165}, {57, 196}, {59, 198}, {58, 197}, {92, 163}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210)
b: (2, 140)(3, 69)(4, 208)(5, 137)(6, 66)(7, 205)(8, 134)(9, 63)(10, 202)(11, 131)(12, 60)(13, 199)(14, 128)(15, 57)(16, 196)(17, 125)(18, 54)(19, 193)(20, 122)(21, 51)(22, 190)(23, 119)(24, 48)(25, 187)(26, 116)(27, 45)(28, 184)(29, 113)(30, 42)(31, 181)(32, 110)(33, 39)(34, 178)(35, 107)(37, 175)(38, 104)(40, 172)(41, 101)(43, 169)(44, 98)(46, 166)(47, 95)(49, 163)(50, 92)(52, 160)(53, 89)(55, 157)(56, 86)(58, 154)(59, 83)(61, 151)(62, 80)(64, 148)(65, 77)(67, 145)(68, 74)(70, 142)(72, 210)(73, 139)(75, 207)(76, 136)(78, 204)(79, 133)(81, 201)(82, 130)(84, 198)(85, 127)(87, 195)(88, 124)(90, 192)(91, 121)(93, 189)(94, 118)(96, 186)(97, 115)(99, 183)(100, 112)(102, 180)(103, 109)(105, 177)(108, 174)(111, 171)(114, 168)(117, 165)(120, 162)(123, 159)(126, 156)(129, 153)(132, 150)(135, 147)(138, 144)(143, 209)(146, 206)(149, 203)(152, 200)(155, 197)(158, 194)(161, 191)(164, 188)(167, 185)(170, 182)(173, 179)
c: (2, 72)(3, 143)(5, 75)(6, 146)(8, 78)(9, 149)(11, 81)(12, 152)(14, 84)(15, 155)(17, 87)(18, 158)(20, 90)(21, 161)(23, 93)(24, 164)(26, 96)(27, 167)(29, 99)(30, 170)(32, 102)(33, 173)(35, 105)(36, 176)(38, 108)(39, 179)(41, 111)(42, 182)(44, 114)(45, 185)(47, 117)(48, 188)(50, 120)(51, 191)(53, 123)(54, 194)(56, 126)(57, 197)(59, 129)(60, 200)(62, 132)(63, 203)(65, 135)(66, 206)(68, 138)(69, 209)(71, 141)(74, 144)(77, 147)(80, 150)(83, 153)(86, 156)(89, 159)(92, 162)(95, 165)(98, 168)(101, 171)(104, 174)(107, 177)(110, 180)(113, 183)(116, 186)(119, 189)(122, 192)(125, 195)(128, 198)(131, 201)(134, 204)(137, 207)(140, 210)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 210, 4 ]
210
-1 210 2 72 140
-2 1 3 73 141
-3 2 4 74 142
-4 143 3 5 75
-5 144 4 6 76
-6 77 145 5 7
-7 78 146 6 8
-8 79 147 7 9
-9 80 148 8 10
-10 11 81 149 9
-11 12 82 150 10
-12 11 13 83 151
-13 12 14 84 152
-14 13 15 85 153
-15 154 14 16 86
-16 155 15 17 87
-17 88 156 16 18
-18 89 157 17 19
-19 90 158 18 20
-20 91 159 19 21
-21 22 92 160 20
-22 23 93 161 21
-23 22 24 94 162
-24 23 25 95 163
-25 24 26 96 164
-26 165 25 27 97
-27 166 26 28 98
-28 99 167 27 29
-29 100 168 28 30
-30 101 169 29 31
-31 102 170 30 32
-32 33 103 171 31
-33 34 104 172 32
-34 33 35 105 173
-35 34 36 106 174
-36 35 37 107 175
-37 176 36 38 108
-38 177 37 39 109
-39 110 178 38 40
-40 111 179 39 41
-41 112 180 40 42
-42 113 181 41 43
-43 44 114 182 42
-44 45 115 183 43
-45 44 46 116 184
-46 45 47 117 185
-47 46 48 118 186
-48 187 47 49 119
-49 188 48 50 120
-50 121 189 49 51
-51 122 190 50 52
-52 123 191 51 53
-53 124 192 52 54
-54 55 125 193 53
-55 56 126 194 54
-56 55 57 127 195
-57 56 58 128 196
-58 57 59 129 197
-59 198 58 60 130
-60 199 59 61 131
-61 132 200 60 62
-62 133 201 61 63
-63 134 202 62 64
-64 135 203 63 65
-65 66 136 204 64
-66 67 137 205 65
-67 66 68 138 206
-68 67 69 139 207
-69 68 70 140 208
-70 209 69 71 141
-71 210 70 72 142
-72 143 1 71 73
-73 144 2 72 74
-74 145 3 73 75
-75 146 4 74 76
-76 77 147 5 75
-77 78 148 6 76
-78 77 79 149 7
-79 78 80 150 8
-80 79 81 151 9
-81 80 82 152 10
-82 11 81 83 153
-83 154 12 82 84
-84 155 13 83 85
-85 156 14 84 86
-86 157 15 85 87
-87 88 158 16 86
-88 89 159 17 87
-89 88 90 160 18
-90 89 91 161 19
-91 90 92 162 20
-92 91 93 163 21
-93 22 92 94 164
-94 165 23 93 95
-95 166 24 94 96
-96 167 25 95 97
-97 168 26 96 98
-98 99 169 27 97
-99 100 170 28 98
-100 99 101 171 29
-101 100 102 172 30
-102 101 103 173 31
-103 102 104 174 32
-104 33 103 105 175
-105 176 34 104 106
-106 177 35 105 107
-107 178 36 106 108
-108 179 37 107 109
-109 110 180 38 108
-110 111 181 39 109
-111 110 112 182 40
-112 111 113 183 41
-113 112 114 184 42
-114 113 115 185 43
-115 44 114 116 186
-116 187 45 115 117
-117 188 46 116 118
-118 189 47 117 119
-119 190 48 118 120
-120 121 191 49 119
-121 122 192 50 120
-122 121 123 193 51
-123 122 124 194 52
-124 123 125 195 53
-125 124 126 196 54
-126 55 125 127 197
-127 198 56 126 128
-128 199 57 127 129
-129 200 58 128 130
-130 201 59 129 131
-131 132 202 60 130
-132 133 203 61 131
-133 132 134 204 62
-134 133 135 205 63
-135 134 136 206 64
-136 135 137 207 65
-137 66 136 138 208
-138 209 67 137 139
-139 210 68 138 140
-140 1 69 139 141
-141 2 70 140 142
-142 143 3 71 141
-143 144 4 72 142
-144 143 145 5 73
-145 144 146 6 74
-146 145 147 7 75
-147 146 148 8 76
-148 77 147 149 9
-149 78 148 150 10
-150 11 79 149 151
-151 12 80 150 152
-152 13 81 151 153
-153 154 14 82 152
-154 155 15 83 153
-155 154 156 16 84
-156 155 157 17 85
-157 156 158 18 86
-158 157 159 19 87
-159 88 158 160 20
-160 89 159 161 21
-161 22 90 160 162
-162 23 91 161 163
-163 24 92 162 164
-164 165 25 93 163
-165 166 26 94 164
-166 165 167 27 95
-167 166 168 28 96
-168 167 169 29 97
-169 168 170 30 98
-170 99 169 171 31
-171 100 170 172 32
-172 33 101 171 173
-173 34 102 172 174
-174 35 103 173 175
-175 176 36 104 174
-176 177 37 105 175
-177 176 178 38 106
-178 177 179 39 107
-179 178 180 40 108
-180 179 181 41 109
-181 110 180 182 42
-182 111 181 183 43
-183 44 112 182 184
-184 45 113 183 185
-185 46 114 184 186
-186 187 47 115 185
-187 188 48 116 186
-188 187 189 49 117
-189 188 190 50 118
-190 189 191 51 119
-191 190 192 52 120
-192 121 191 193 53
-193 122 192 194 54
-194 55 123 193 195
-195 56 124 194 196
-196 57 125 195 197
-197 198 58 126 196
-198 199 59 127 197
-199 198 200 60 128
-200 199 201 61 129
-201 200 202 62 130
-202 201 203 63 131
-203 132 202 204 64
-204 133 203 205 65
-205 66 134 204 206
-206 67 135 205 207
-207 68 136 206 208
-208 209 69 137 207
-209 210 70 138 208
-210 209 1 71 139
0

**************