C4graphGraph forms for C4 [ 212, 3 ] = R_106(55,54)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 212, 3 ] = R_106(55,54).

(I) Following is a form readable by MAGMA:

g:=Graph<212|{ {2, 3}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {1, 2}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {3, 4}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {83, 84}, {91, 92}, {99, 100}, {7, 8}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {15, 16}, {47, 48}, {79, 80}, {64, 115}, {72, 123}, {68, 119}, {76, 127}, {128, 180}, {129, 181}, {130, 182}, {131, 183}, {136, 188}, {137, 189}, {138, 190}, {139, 191}, {65, 116}, {75, 126}, {73, 124}, {67, 118}, {128, 182}, {129, 183}, {136, 190}, {137, 191}, {66, 117}, {74, 125}, {130, 184}, {131, 185}, {134, 188}, {135, 189}, {132, 184}, {133, 185}, {134, 186}, {135, 187}, {69, 120}, {71, 122}, {132, 186}, {133, 187}, {31, 32}, {70, 121}, {95, 96}, {138, 192}, {158, 212}, {155, 209}, {154, 208}, {143, 197}, {142, 196}, {139, 193}, {140, 192}, {159, 211}, {158, 210}, {157, 209}, {156, 208}, {143, 195}, {142, 194}, {141, 193}, {61, 112}, {63, 114}, {140, 194}, {157, 211}, {156, 210}, {141, 195}, {62, 113}, {56, 107}, {60, 111}, {144, 196}, {155, 207}, {154, 206}, {153, 205}, {152, 204}, {147, 199}, {146, 198}, {145, 197}, {57, 108}, {59, 110}, {144, 198}, {153, 207}, {152, 206}, {145, 199}, {58, 109}, {146, 200}, {151, 205}, {150, 204}, {147, 201}, {148, 200}, {151, 203}, {150, 202}, {149, 201}, {148, 202}, {149, 203}, {1, 107}, {4, 110}, {5, 111}, {16, 122}, {17, 123}, {20, 126}, {21, 127}, {1, 106}, {2, 108}, {3, 109}, {18, 124}, {19, 125}, {160, 212}, {6, 112}, {7, 113}, {14, 120}, {15, 121}, {8, 114}, {9, 115}, {12, 118}, {13, 119}, {10, 116}, {11, 117}, {63, 64}, {22, 128}, {63, 169}, {62, 168}, {55, 161}, {54, 160}, {23, 129}, {30, 136}, {31, 137}, {86, 192}, {87, 193}, {94, 200}, {95, 201}, {24, 130}, {61, 167}, {60, 166}, {57, 163}, {56, 162}, {25, 131}, {28, 134}, {29, 135}, {88, 194}, {89, 195}, {92, 198}, {93, 199}, {2, 159}, {32, 189}, {34, 191}, {26, 132}, {59, 165}, {58, 164}, {27, 133}, {90, 196}, {91, 197}, {1, 158}, {33, 190}, {3, 160}, {7, 164}, {11, 168}, {15, 172}, {19, 176}, {23, 180}, {27, 184}, {31, 188}, {4, 161}, {6, 163}, {12, 169}, {14, 171}, {20, 177}, {22, 179}, {28, 185}, {30, 187}, {5, 162}, {13, 170}, {21, 178}, {29, 186}, {32, 138}, {53, 159}, {52, 158}, {49, 155}, {48, 154}, {33, 139}, {36, 142}, {37, 143}, {96, 202}, {97, 203}, {100, 206}, {101, 207}, {8, 165}, {10, 167}, {24, 181}, {26, 183}, {34, 140}, {51, 157}, {50, 156}, {35, 141}, {98, 204}, {99, 205}, {9, 166}, {25, 182}, {38, 144}, {47, 153}, {46, 152}, {39, 145}, {102, 208}, {103, 209}, {40, 146}, {45, 151}, {41, 147}, {44, 150}, {104, 210}, {105, 211}, {16, 173}, {18, 175}, {42, 148}, {43, 149}, {106, 212}, {17, 174}, {107, 161}, {110, 164}, {111, 165}, {122, 176}, {123, 177}, {126, 180}, {127, 181}, {108, 160}, {109, 161}, {110, 162}, {111, 163}, {124, 176}, {125, 177}, {126, 178}, {127, 179}, {77, 128}, {79, 130}, {93, 144}, {95, 146}, {108, 162}, {109, 163}, {124, 178}, {125, 179}, {78, 129}, {94, 145}, {80, 131}, {84, 135}, {88, 139}, {92, 143}, {112, 164}, {113, 165}, {114, 166}, {115, 167}, {120, 172}, {121, 173}, {122, 174}, {123, 175}, {81, 132}, {83, 134}, {89, 140}, {91, 142}, {112, 166}, {113, 167}, {120, 174}, {121, 175}, {82, 133}, {90, 141}, {114, 168}, {115, 169}, {118, 172}, {119, 173}, {116, 168}, {117, 169}, {118, 170}, {119, 171}, {85, 136}, {87, 138}, {116, 170}, {117, 171}, {86, 137}, {35, 192}, {55, 212}, {51, 208}, {47, 204}, {39, 196}, {43, 200}, {36, 193}, {54, 211}, {52, 209}, {46, 203}, {44, 201}, {38, 195}, {37, 194}, {53, 210}, {45, 202}, {64, 170}, {69, 175}, {68, 174}, {65, 171}, {80, 186}, {81, 187}, {84, 190}, {85, 191}, {40, 197}, {42, 199}, {66, 172}, {67, 173}, {82, 188}, {83, 189}, {41, 198}, {96, 147}, {100, 151}, {104, 155}, {107, 159}, {97, 148}, {99, 150}, {105, 156}, {70, 176}, {71, 177}, {78, 184}, {79, 185}, {98, 149}, {106, 157}, {72, 178}, {73, 179}, {76, 182}, {77, 183}, {48, 205}, {50, 207}, {101, 152}, {103, 154}, {74, 180}, {75, 181}, {49, 206}, {102, 153} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (33, 138)(34, 192)(86, 191)(87, 139)
b: (19, 124)(20, 178)(72, 177)(73, 125)
c: (9, 114)(10, 168)(62, 167)(63, 115)
d: (2, 158, 107, 106)(3, 52, 161, 157)(4, 51)(5, 50)(6, 49)(7, 48)(8, 47)(9, 46)(10, 45)(11, 44)(12, 43)(13, 42)(14, 41)(15, 40)(16, 39)(17, 38)(18, 37)(19, 36)(20, 35)(21, 34)(22, 33)(23, 32)(24, 31)(25, 30)(26, 29)(27, 28)(53, 55, 211, 160)(56, 105, 108, 210)(57, 104)(58, 103)(59, 102)(60, 101)(61, 100)(62, 99)(63, 98)(64, 97)(65, 96)(66, 95)(67, 94)(68, 93)(69, 92)(70, 91)(71, 90)(72, 89)(73, 88)(74, 87)(75, 86)(76, 85)(77, 84)(78, 83)(79, 82)(80, 81)(109, 209)(110, 208)(111, 207)(112, 206)(113, 205)(114, 204)(115, 203)(116, 202)(117, 201)(118, 200)(119, 199)(120, 198)(121, 197)(122, 196)(123, 195)(124, 194)(125, 193)(126, 192)(127, 191)(128, 190)(129, 189)(130, 188)(131, 187)(132, 186)(133, 185)(134, 184)(135, 183)(136, 182)(137, 181)(138, 180)(139, 179)(140, 178)(141, 177)(142, 176)(143, 175)(144, 174)(145, 173)(146, 172)(147, 171)(148, 170)(149, 169)(150, 168)(151, 167)(152, 166)(153, 165)(154, 164)(155, 163)(156, 162)(159, 212)
e: (49, 154)(50, 208)(102, 207)(103, 155)
f: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106)(107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212)
g: (6, 111)(7, 60)(8, 166)(59, 164)(61, 113)(112, 165)
h: (12, 117)(13, 66)(14, 172)(65, 170)(67, 119)(118, 171)
m: (30, 135)(31, 84)(32, 190)(83, 188)(85, 137)(136, 189)
n1: (50, 155)(51, 104)(52, 210)(103, 208)(105, 157)(156, 209)
a1: (23, 128)(24, 182)(76, 181)(77, 129)
b1: (29, 134)(30, 188)(82, 187)(83, 135)
c1: (35, 140)(36, 194)(88, 193)(89, 141)
d1: (16, 121)(17, 70)(18, 176)(69, 174)(71, 123)(122, 175)
e1: (45, 150)(46, 204)(98, 203)(99, 151)
f1: (48, 153)(49, 102)(50, 208)(101, 206)(103, 155)(154, 207)
g1: (38, 143)(39, 92)(40, 198)(91, 196)(93, 145)(144, 197)
h1: (47, 152)(48, 206)(100, 205)(101, 153)
m1: (20, 125)(21, 74)(22, 180)(73, 178)(75, 127)(126, 179)
n2: (52, 157)(53, 211)(105, 210)(106, 158)
a2: (14, 119)(15, 68)(16, 174)(67, 172)(69, 121)(120, 173)
b2: (5, 110)(6, 164)(58, 163)(59, 111)
c2: (40, 145)(41, 94)(42, 200)(93, 198)(95, 147)(146, 199)
d2: (43, 148)(44, 202)(96, 201)(97, 149)
e2: (24, 129)(25, 78)(26, 184)(77, 182)(79, 131)(130, 183)
f2: (25, 130)(26, 184)(78, 183)(79, 131)
g2: (18, 123)(19, 72)(20, 178)(71, 176)(73, 125)(124, 177)
h2: (8, 113)(9, 62)(10, 168)(61, 166)(63, 115)(114, 167)
m2: (26, 131)(27, 80)(28, 186)(79, 184)(81, 133)(132, 185)
n3: (22, 127)(23, 76)(24, 182)(75, 180)(77, 129)(128, 181)
a3: (10, 115)(11, 64)(12, 170)(63, 168)(65, 117)(116, 169)
b3: (21, 126)(22, 180)(74, 179)(75, 127)
c3: (39, 144)(40, 198)(92, 197)(93, 145)
d3: (51, 156)(52, 210)(104, 209)(105, 157)
e3: (46, 151)(47, 100)(48, 206)(99, 204)(101, 153)(152, 205)
f3: (32, 137)(33, 86)(34, 192)(85, 190)(87, 139)(138, 191)
g3: (42, 147)(43, 96)(44, 202)(95, 200)(97, 149)(148, 201)
h3: (41, 146)(42, 200)(94, 199)(95, 147)
m3: (27, 132)(28, 186)(80, 185)(81, 133)
n4: (36, 141)(37, 90)(38, 196)(89, 194)(91, 143)(142, 195)
a4: (17, 122)(18, 176)(70, 175)(71, 123)
b4: (15, 120)(16, 174)(68, 173)(69, 121)
c4: (34, 139)(35, 88)(36, 194)(87, 192)(89, 141)(140, 193)
d4: (31, 136)(32, 190)(84, 189)(85, 137)
e4: (37, 142)(38, 196)(90, 195)(91, 143)
f4: (28, 133)(29, 82)(30, 188)(81, 186)(83, 135)(134, 187)
g4: (44, 149)(45, 98)(46, 204)(97, 202)(99, 151)(150, 203)
h4: (4, 109)(5, 58)(6, 164)(57, 162)(59, 111)(110, 163)
m4: (13, 118)(14, 172)(66, 171)(67, 119)
n5: (11, 116)(12, 170)(64, 169)(65, 117)
a5: (7, 112)(8, 166)(60, 165)(61, 113)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 212, 3 ]
212
-1 2 158 106 107
-2 1 3 159 108
-3 2 4 160 109
-4 110 3 5 161
-5 111 4 6 162
-6 112 5 7 163
-7 113 6 8 164
-8 165 114 7 9
-9 166 115 8 10
-10 11 167 116 9
-11 12 168 117 10
-12 11 13 169 118
-13 12 14 170 119
-14 13 15 171 120
-15 121 14 16 172
-16 122 15 17 173
-17 123 16 18 174
-18 124 17 19 175
-19 176 125 18 20
-20 177 126 19 21
-21 22 178 127 20
-22 23 179 128 21
-23 22 24 180 129
-24 23 25 181 130
-25 24 26 182 131
-26 132 25 27 183
-27 133 26 28 184
-28 134 27 29 185
-29 135 28 30 186
-30 187 136 29 31
-31 188 137 30 32
-32 33 189 138 31
-33 34 190 139 32
-34 33 35 191 140
-35 34 36 192 141
-36 35 37 193 142
-37 143 36 38 194
-38 144 37 39 195
-39 145 38 40 196
-40 146 39 41 197
-41 198 147 40 42
-42 199 148 41 43
-43 44 200 149 42
-44 45 201 150 43
-45 44 46 202 151
-46 45 47 203 152
-47 46 48 204 153
-48 154 47 49 205
-49 155 48 50 206
-50 156 49 51 207
-51 157 50 52 208
-52 209 158 51 53
-53 210 159 52 54
-54 55 211 160 53
-55 56 212 161 54
-56 55 57 107 162
-57 56 58 108 163
-58 57 59 109 164
-59 110 165 58 60
-60 111 166 59 61
-61 112 167 60 62
-62 113 168 61 63
-63 114 169 62 64
-64 115 170 63 65
-65 66 116 171 64
-66 67 117 172 65
-67 66 68 118 173
-68 67 69 119 174
-69 68 70 120 175
-70 121 176 69 71
-71 122 177 70 72
-72 123 178 71 73
-73 124 179 72 74
-74 125 180 73 75
-75 126 181 74 76
-76 77 127 182 75
-77 78 128 183 76
-78 77 79 129 184
-79 78 80 130 185
-80 79 81 131 186
-81 132 187 80 82
-82 133 188 81 83
-83 134 189 82 84
-84 135 190 83 85
-85 136 191 84 86
-86 137 192 85 87
-87 88 138 193 86
-88 89 139 194 87
-89 88 90 140 195
-90 89 91 141 196
-91 90 92 142 197
-92 143 198 91 93
-93 144 199 92 94
-94 145 200 93 95
-95 146 201 94 96
-96 147 202 95 97
-97 148 203 96 98
-98 99 149 204 97
-99 100 150 205 98
-100 99 101 151 206
-101 100 102 152 207
-102 101 103 153 208
-103 154 209 102 104
-104 155 210 103 105
-105 156 211 104 106
-106 1 157 212 105
-107 1 56 159 161
-108 2 57 160 162
-109 3 58 161 163
-110 4 59 162 164
-111 165 5 60 163
-112 166 6 61 164
-113 165 167 7 62
-114 166 168 8 63
-115 167 169 9 64
-116 168 170 10 65
-117 11 66 169 171
-118 12 67 170 172
-119 13 68 171 173
-120 14 69 172 174
-121 15 70 173 175
-122 176 16 71 174
-123 177 17 72 175
-124 176 178 18 73
-125 177 179 19 74
-126 178 180 20 75
-127 179 181 21 76
-128 22 77 180 182
-129 23 78 181 183
-130 24 79 182 184
-131 25 80 183 185
-132 26 81 184 186
-133 187 27 82 185
-134 188 28 83 186
-135 187 189 29 84
-136 188 190 30 85
-137 189 191 31 86
-138 190 192 32 87
-139 33 88 191 193
-140 34 89 192 194
-141 35 90 193 195
-142 36 91 194 196
-143 37 92 195 197
-144 198 38 93 196
-145 199 39 94 197
-146 198 200 40 95
-147 199 201 41 96
-148 200 202 42 97
-149 201 203 43 98
-150 44 99 202 204
-151 45 100 203 205
-152 46 101 204 206
-153 47 102 205 207
-154 48 103 206 208
-155 209 49 104 207
-156 210 50 105 208
-157 209 211 51 106
-158 1 210 212 52
-159 2 211 107 53
-160 3 212 108 54
-161 55 4 107 109
-162 110 56 5 108
-163 111 57 6 109
-164 110 112 58 7
-165 111 113 59 8
-166 112 114 60 9
-167 113 115 61 10
-168 11 114 116 62
-169 12 115 117 63
-170 13 116 118 64
-171 14 117 119 65
-172 66 15 118 120
-173 121 67 16 119
-174 122 68 17 120
-175 121 123 69 18
-176 122 124 70 19
-177 123 125 71 20
-178 124 126 72 21
-179 22 125 127 73
-180 23 126 128 74
-181 24 127 129 75
-182 25 128 130 76
-183 77 26 129 131
-184 132 78 27 130
-185 133 79 28 131
-186 132 134 80 29
-187 133 135 81 30
-188 134 136 82 31
-189 135 137 83 32
-190 33 136 138 84
-191 34 137 139 85
-192 35 138 140 86
-193 36 139 141 87
-194 88 37 140 142
-195 143 89 38 141
-196 144 90 39 142
-197 143 145 91 40
-198 144 146 92 41
-199 145 147 93 42
-200 146 148 94 43
-201 44 147 149 95
-202 45 148 150 96
-203 46 149 151 97
-204 47 150 152 98
-205 99 48 151 153
-206 154 100 49 152
-207 155 101 50 153
-208 154 156 102 51
-209 155 157 103 52
-210 156 158 104 53
-211 157 159 105 54
-212 55 158 160 106
0

**************