C4graphGraph forms for C4 [ 212, 4 ] = SDD(C_53(1,23))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 212, 4 ] = SDD(C_53(1,23)).

(I) Following is a form readable by MAGMA:

g:=Graph<212|{ {64, 127}, {63, 127}, {62, 127}, {60, 126}, {61, 126}, {57, 125}, {59, 127}, {56, 125}, {59, 126}, {56, 126}, {58, 125}, {51, 123}, {53, 125}, {50, 123}, {53, 124}, {48, 122}, {54, 124}, {49, 122}, {55, 124}, {50, 124}, {52, 123}, {39, 119}, {41, 121}, {38, 119}, {41, 120}, {36, 118}, {42, 120}, {37, 118}, {43, 120}, {33, 117}, {47, 123}, {45, 121}, {35, 119}, {32, 117}, {47, 122}, {44, 121}, {35, 118}, {32, 118}, {44, 122}, {34, 117}, {46, 121}, {38, 120}, {40, 119}, {15, 111}, {17, 113}, {14, 111}, {17, 112}, {12, 110}, {18, 112}, {13, 110}, {19, 112}, {9, 109}, {23, 115}, {21, 113}, {11, 111}, {8, 109}, {23, 114}, {20, 113}, {11, 110}, {8, 110}, {20, 114}, {10, 109}, {22, 113}, {3, 107}, {29, 117}, {27, 115}, {5, 109}, {2, 107}, {29, 116}, {26, 115}, {5, 108}, {1, 107}, {30, 116}, {24, 114}, {6, 108}, {7, 108}, {31, 116}, {25, 114}, {1, 108}, {26, 116}, {4, 107}, {28, 115}, {14, 112}, {16, 111}, {2, 130}, {84, 212}, {47, 175}, {46, 174}, {10, 139}, {82, 211}, {13, 140}, {44, 174}, {50, 176}, {80, 210}, {44, 175}, {45, 174}, {50, 177}, {51, 176}, {40, 172}, {41, 173}, {52, 176}, {53, 177}, {6, 131}, {74, 207}, {43, 173}, {55, 177}, {72, 206}, {41, 174}, {42, 173}, {53, 178}, {54, 177}, {34, 170}, {35, 171}, {58, 178}, {59, 179}, {69, 205}, {12, 133}, {25, 144}, {15, 134}, {3, 137}, {38, 172}, {32, 170}, {56, 178}, {62, 180}, {32, 171}, {39, 172}, {38, 173}, {33, 170}, {56, 179}, {57, 178}, {62, 181}, {63, 180}, {7, 138}, {31, 146}, {28, 145}, {9, 132}, {37, 171}, {61, 179}, {66, 204}, {35, 172}, {36, 171}, {59, 180}, {60, 179}, {67, 211}, {24, 137}, {27, 138}, {64, 210}, {70, 212}, {18, 135}, {30, 139}, {86, 192}, {95, 201}, {94, 200}, {87, 193}, {87, 192}, {95, 200}, {22, 143}, {94, 199}, {92, 197}, {90, 195}, {88, 193}, {88, 194}, {93, 199}, {92, 198}, {89, 195}, {4, 159}, {93, 198}, {89, 194}, {76, 208}, {16, 141}, {21, 136}, {19, 142}, {49, 175}, {91, 197}, {90, 196}, {47, 176}, {91, 196}, {48, 175}, {78, 209}, {1, 161}, {1, 160}, {48, 145}, {51, 146}, {58, 155}, {61, 156}, {2, 160}, {3, 160}, {4, 160}, {27, 191}, {5, 161}, {42, 143}, {54, 147}, {7, 161}, {24, 190}, {5, 162}, {6, 161}, {10, 162}, {21, 189}, {11, 163}, {36, 141}, {102, 207}, {100, 205}, {98, 203}, {96, 201}, {39, 142}, {49, 152}, {60, 149}, {63, 150}, {8, 162}, {101, 207}, {100, 206}, {97, 203}, {96, 202}, {14, 164}, {8, 163}, {101, 206}, {97, 202}, {15, 164}, {14, 165}, {9, 162}, {33, 140}, {52, 153}, {55, 154}, {57, 148}, {13, 163}, {99, 205}, {98, 204}, {18, 188}, {11, 164}, {99, 204}, {12, 163}, {9, 185}, {23, 167}, {22, 166}, {34, 147}, {37, 148}, {20, 166}, {26, 168}, {20, 167}, {27, 168}, {26, 169}, {21, 166}, {15, 187}, {29, 169}, {28, 168}, {17, 165}, {16, 164}, {2, 183}, {12, 186}, {103, 209}, {102, 208}, {31, 169}, {19, 165}, {17, 166}, {103, 208}, {30, 169}, {29, 170}, {18, 165}, {7, 191}, {46, 151}, {106, 211}, {104, 209}, {104, 210}, {105, 211}, {105, 210}, {3, 190}, {45, 144}, {43, 150}, {40, 149}, {6, 184}, {106, 212}, {25, 167}, {62, 128}, {23, 168}, {24, 167}, {65, 129}, {65, 128}, {66, 128}, {67, 128}, {69, 129}, {71, 131}, {68, 129}, {71, 130}, {68, 130}, {70, 129}, {76, 132}, {77, 133}, {79, 135}, {74, 131}, {79, 134}, {10, 192}, {72, 130}, {73, 131}, {77, 134}, {95, 148}, {91, 144}, {84, 159}, {78, 133}, {13, 193}, {95, 147}, {94, 146}, {93, 145}, {92, 144}, {82, 158}, {73, 132}, {94, 147}, {92, 145}, {80, 157}, {75, 133}, {75, 132}, {93, 146}, {4, 212}, {19, 195}, {74, 154}, {72, 153}, {16, 194}, {22, 196}, {78, 156}, {88, 140}, {91, 143}, {90, 142}, {89, 141}, {66, 151}, {90, 143}, {88, 141}, {82, 135}, {80, 134}, {81, 135}, {76, 155}, {89, 142}, {31, 199}, {70, 159}, {81, 136}, {28, 198}, {83, 137}, {83, 136}, {87, 140}, {25, 197}, {87, 139}, {86, 138}, {85, 137}, {84, 136}, {64, 157}, {86, 139}, {67, 158}, {69, 152}, {30, 192}, {85, 138}, {33, 193}, {43, 203}, {40, 202}, {46, 204}, {39, 195}, {36, 194}, {45, 197}, {84, 189}, {86, 191}, {34, 200}, {85, 191}, {58, 208}, {80, 187}, {85, 190}, {37, 201}, {81, 189}, {61, 209}, {81, 188}, {83, 190}, {42, 196}, {83, 189}, {82, 188}, {57, 201}, {70, 182}, {71, 183}, {73, 185}, {73, 184}, {75, 186}, {68, 182}, {74, 184}, {75, 185}, {68, 183}, {69, 182}, {79, 188}, {51, 199}, {106, 158}, {105, 157}, {104, 156}, {99, 151}, {98, 150}, {97, 149}, {96, 148}, {63, 203}, {64, 180}, {65, 181}, {78, 186}, {79, 187}, {76, 185}, {106, 159}, {104, 157}, {98, 151}, {96, 149}, {48, 198}, {60, 202}, {67, 181}, {77, 187}, {65, 182}, {105, 158}, {97, 150}, {66, 181}, {77, 186}, {55, 207}, {52, 206}, {99, 152}, {103, 156}, {49, 205}, {103, 155}, {102, 154}, {101, 153}, {100, 152}, {100, 153}, {102, 155}, {54, 200}, {71, 184}, {101, 154}, {72, 183} }>;

(II) A more general form is to represent the graph as the orbit of {64, 127} under the group generated by the following permutations:

a: (158, 211)
b: (140, 193)
c: (121, 174)
d: (1, 2, 71, 6)(3, 68, 74, 5)(4, 72, 73, 7)(8, 24, 65, 55)(9, 85, 70, 101)(10, 83, 69, 102)(11, 25, 62, 54)(12, 23, 67, 50)(13, 20, 66, 53)(14, 45, 59, 34)(15, 92, 64, 94)(16, 91, 63, 95)(17, 46, 56, 33)(18, 44, 61, 29)(19, 41, 60, 32)(21, 99, 58, 87)(22, 98, 57, 88)(26, 82, 47, 78)(27, 106, 52, 75)(28, 105, 51, 77)(30, 81, 49, 103)(31, 79, 48, 104)(35, 39, 38, 40)(36, 90, 43, 96)(37, 89, 42, 97)(76, 86, 84, 100)(80, 93)(107, 130, 131, 108)(109, 137, 129, 154)(110, 114, 128, 124)(111, 144, 127, 147)(112, 121, 126, 117)(113, 151, 125, 140)(115, 158, 123, 133)(116, 135, 122, 156)(118, 142, 120, 149)(132, 138, 159, 153)(134, 145, 157, 146)(136, 152, 155, 139)(141, 143, 150, 148)(160, 183, 184, 161)(162, 190, 182, 207)(163, 167, 181, 177)(164, 197, 180, 200)(165, 174, 179, 170)(166, 204, 178, 193)(168, 211, 176, 186)(169, 188, 175, 209)(171, 195, 173, 202)(185, 191, 212, 206)(187, 198, 210, 199)(189, 205, 208, 192)(194, 196, 203, 201)
e: (149, 202)
f: (159, 212)
g: (2, 7)(3, 6)(4, 5)(8, 106)(9, 84)(10, 70)(11, 105)(12, 82)(13, 67)(14, 104)(15, 80)(16, 64)(17, 103)(18, 78)(19, 61)(20, 102)(21, 76)(22, 58)(23, 101)(24, 74)(25, 55)(26, 100)(27, 72)(28, 52)(29, 99)(30, 69)(31, 49)(32, 98)(33, 66)(34, 46)(35, 97)(36, 63)(37, 43)(38, 96)(39, 60)(41, 95)(42, 57)(44, 94)(45, 54)(47, 93)(48, 51)(50, 92)(53, 91)(56, 90)(59, 89)(62, 88)(65, 87)(68, 86)(71, 85)(73, 83)(75, 81)(77, 79)(107, 108)(109, 159)(110, 158)(111, 157)(112, 156)(113, 155)(114, 154)(115, 153)(116, 152)(117, 151)(118, 150)(119, 149)(120, 148)(121, 147)(122, 146)(123, 145)(124, 144)(125, 143)(126, 142)(127, 141)(128, 140)(129, 139)(130, 138)(131, 137)(132, 136)(133, 135)(160, 161)(162, 212)(163, 211)(164, 210)(165, 209)(166, 208)(167, 207)(168, 206)(169, 205)(170, 204)(171, 203)(172, 202)(173, 201)(174, 200)(175, 199)(176, 198)(177, 197)(178, 196)(179, 195)(180, 194)(181, 193)(182, 192)(183, 191)(184, 190)(185, 189)(186, 188)
h: (147, 200)
m: (146, 199)
n1: (142, 195)
a1: (107, 160)
b1: (112, 165)
c1: (111, 164)
d1: (148, 201)
e1: (122, 175)
f1: (133, 186)
g1: (120, 173)
h1: (115, 168)
m1: (157, 210)
n2: (110, 163)
a2: (114, 167)
b2: (139, 192)
c2: (132, 185)
d2: (153, 206)
e2: (155, 208)
f2: (125, 178)
g2: (150, 203)
h2: (113, 166)
m2: (117, 170)
n3: (119, 172)
a3: (145, 198)
b3: (128, 181)
c3: (131, 184)
d3: (118, 171)
e3: (143, 196)
f3: (141, 194)
g3: (129, 182)
h3: (154, 207)
m3: (134, 187)
n4: (152, 205)
a4: (130, 183)
b4: (144, 197)
c4: (124, 177)
d4: (109, 162)
e4: (137, 190)
f4: (135, 188)
g4: (123, 176)
h4: (151, 204)
m4: (138, 191)
n5: (136, 189)
a5: (156, 209)
b5: (127, 180)
c5: (108, 161)
d5: (116, 169)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 212, 4 ]
212
-1 160 161 107 108
-2 160 183 107 130
-3 190 137 160 107
-4 212 159 160 107
-5 161 162 108 109
-6 161 184 108 131
-7 191 138 161 108
-8 110 162 163 109
-9 132 162 185 109
-10 192 139 162 109
-11 110 111 163 164
-12 110 133 163 186
-13 110 193 140 163
-14 165 111 112 164
-15 187 111 134 164
-16 111 194 141 164
-17 165 166 112 113
-18 165 188 112 135
-19 165 112 195 142
-20 166 167 113 114
-21 166 189 113 136
-22 143 166 113 196
-23 167 168 114 115
-24 167 190 114 137
-25 144 167 114 197
-26 168 169 115 116
-27 168 191 115 138
-28 198 145 168 115
-29 169 170 116 117
-30 169 192 116 139
-31 199 146 169 116
-32 170 171 117 118
-33 170 193 117 140
-34 200 147 170 117
-35 171 172 118 119
-36 171 194 118 141
-37 201 148 171 118
-38 172 173 119 120
-39 172 195 119 142
-40 202 149 172 119
-41 121 173 174 120
-42 143 173 196 120
-43 203 150 173 120
-44 121 122 174 175
-45 121 144 174 197
-46 121 204 151 174
-47 176 122 123 175
-48 198 122 145 175
-49 122 205 152 175
-50 176 177 123 124
-51 176 199 123 146
-52 176 123 206 153
-53 177 178 124 125
-54 177 200 124 147
-55 154 177 124 207
-56 178 179 125 126
-57 178 201 125 148
-58 155 178 125 208
-59 179 180 126 127
-60 179 202 126 149
-61 209 156 179 126
-62 180 181 127 128
-63 180 203 127 150
-64 210 157 180 127
-65 181 182 128 129
-66 181 204 128 151
-67 211 158 181 128
-68 182 183 129 130
-69 182 205 129 152
-70 212 159 182 129
-71 183 184 130 131
-72 183 206 130 153
-73 132 184 185 131
-74 154 184 207 131
-75 132 133 185 186
-76 132 155 185 208
-77 187 133 134 186
-78 209 133 156 186
-79 187 188 134 135
-80 187 210 134 157
-81 188 189 135 136
-82 188 211 135 158
-83 189 190 136 137
-84 189 212 136 159
-85 190 191 137 138
-86 191 192 138 139
-87 192 193 139 140
-88 193 194 140 141
-89 194 195 141 142
-90 143 195 196 142
-91 143 144 196 197
-92 198 144 145 197
-93 198 199 145 146
-94 199 200 146 147
-95 200 201 147 148
-96 201 202 148 149
-97 202 203 149 150
-98 203 204 150 151
-99 204 205 151 152
-100 205 206 152 153
-101 154 206 207 153
-102 154 155 207 208
-103 209 155 156 208
-104 209 210 156 157
-105 210 211 157 158
-106 211 212 158 159
-107 1 2 3 4
-108 1 5 6 7
-109 5 8 9 10
-110 11 12 13 8
-111 11 14 15 16
-112 14 17 18 19
-113 22 17 20 21
-114 23 24 25 20
-115 23 26 27 28
-116 26 29 30 31
-117 33 34 29 32
-118 35 36 37 32
-119 35 38 39 40
-120 38 41 42 43
-121 44 45 46 41
-122 44 47 48 49
-123 47 50 51 52
-124 55 50 53 54
-125 56 57 58 53
-126 56 59 60 61
-127 59 62 63 64
-128 66 67 62 65
-129 68 69 70 65
-130 2 68 71 72
-131 71 6 73 74
-132 73 9 75 76
-133 77 12 78 75
-134 77 79 80 15
-135 79 81 82 18
-136 81 83 84 21
-137 24 3 83 85
-138 27 7 85 86
-139 30 86 10 87
-140 33 88 13 87
-141 88 89 36 16
-142 89 90 39 19
-143 22 90 91 42
-144 45 25 91 92
-145 48 92 93 28
-146 93 94 51 31
-147 34 94 95 54
-148 57 37 95 96
-149 60 40 96 97
-150 63 97 43 98
-151 66 99 46 98
-152 99 100 69 49
-153 100 101 72 52
-154 55 101 102 74
-155 58 102 103 76
-156 78 103 104 61
-157 80 104 105 64
-158 67 82 105 106
-159 4 70 84 106
-160 1 2 3 4
-161 1 5 6 7
-162 5 8 9 10
-163 11 12 13 8
-164 11 14 15 16
-165 14 17 18 19
-166 22 17 20 21
-167 23 24 25 20
-168 23 26 27 28
-169 26 29 30 31
-170 33 34 29 32
-171 35 36 37 32
-172 35 38 39 40
-173 38 41 42 43
-174 44 45 46 41
-175 44 47 48 49
-176 47 50 51 52
-177 55 50 53 54
-178 56 57 58 53
-179 56 59 60 61
-180 59 62 63 64
-181 66 67 62 65
-182 68 69 70 65
-183 2 68 71 72
-184 71 6 73 74
-185 73 9 75 76
-186 77 12 78 75
-187 77 79 80 15
-188 79 81 82 18
-189 81 83 84 21
-190 24 3 83 85
-191 27 7 85 86
-192 30 86 10 87
-193 33 88 13 87
-194 88 89 36 16
-195 89 90 39 19
-196 22 90 91 42
-197 45 25 91 92
-198 48 92 93 28
-199 93 94 51 31
-200 34 94 95 54
-201 57 37 95 96
-202 60 40 96 97
-203 63 97 43 98
-204 66 99 46 98
-205 99 100 69 49
-206 100 101 72 52
-207 55 101 102 74
-208 58 102 103 76
-209 78 103 104 61
-210 80 104 105 64
-211 67 82 105 106
-212 4 70 84 106
0

**************