C4graphGraph forms for C4 [ 215, 1 ] = C_215(1,44)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 215, 1 ] = C_215(1,44).

(I) Following is a form readable by MAGMA:

g:=Graph<215|{ {2, 3}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {1, 2}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {3, 4}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {7, 8}, {199, 200}, {183, 184}, {167, 168}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {15, 16}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {1, 45}, {83, 127}, {82, 126}, {81, 125}, {80, 124}, {67, 111}, {66, 110}, {65, 109}, {64, 108}, {2, 46}, {3, 47}, {16, 60}, {17, 61}, {18, 62}, {19, 63}, {128, 172}, {129, 173}, {130, 174}, {131, 175}, {144, 188}, {145, 189}, {146, 190}, {147, 191}, {4, 48}, {79, 123}, {78, 122}, {77, 121}, {76, 120}, {71, 115}, {70, 114}, {69, 113}, {68, 112}, {5, 49}, {6, 50}, {7, 51}, {12, 56}, {13, 57}, {14, 58}, {15, 59}, {132, 176}, {133, 177}, {134, 178}, {135, 179}, {140, 184}, {141, 185}, {142, 186}, {143, 187}, {8, 52}, {75, 119}, {74, 118}, {73, 117}, {72, 116}, {9, 53}, {10, 54}, {11, 55}, {136, 180}, {137, 181}, {138, 182}, {139, 183}, {31, 32}, {159, 160}, {95, 96}, {20, 64}, {159, 203}, {158, 202}, {157, 201}, {156, 200}, {63, 107}, {62, 106}, {61, 105}, {60, 104}, {55, 99}, {54, 98}, {53, 97}, {52, 96}, {21, 65}, {22, 66}, {23, 67}, {28, 72}, {29, 73}, {30, 74}, {31, 75}, {148, 192}, {149, 193}, {150, 194}, {151, 195}, {24, 68}, {155, 199}, {154, 198}, {153, 197}, {59, 103}, {58, 102}, {57, 101}, {56, 100}, {25, 69}, {26, 70}, {27, 71}, {152, 196}, {32, 76}, {163, 207}, {162, 206}, {161, 205}, {160, 204}, {51, 95}, {50, 94}, {49, 93}, {48, 92}, {33, 77}, {34, 78}, {35, 79}, {36, 80}, {167, 211}, {166, 210}, {165, 209}, {164, 208}, {47, 91}, {46, 90}, {45, 89}, {37, 81}, {38, 82}, {39, 83}, {44, 88}, {40, 84}, {171, 215}, {170, 214}, {169, 213}, {168, 212}, {41, 85}, {42, 86}, {43, 87}, {63, 64}, {191, 192}, {4, 175}, {16, 187}, {20, 191}, {1, 172}, {3, 174}, {17, 188}, {19, 190}, {2, 173}, {18, 189}, {5, 176}, {7, 178}, {13, 184}, {15, 186}, {6, 177}, {14, 185}, {8, 179}, {12, 183}, {9, 180}, {11, 182}, {10, 181}, {84, 128}, {85, 129}, {86, 130}, {87, 131}, {92, 136}, {93, 137}, {94, 138}, {95, 139}, {116, 160}, {117, 161}, {118, 162}, {119, 163}, {124, 168}, {125, 169}, {126, 170}, {127, 171}, {21, 192}, {23, 194}, {29, 200}, {31, 202}, {1, 215}, {22, 193}, {30, 201}, {24, 195}, {28, 199}, {88, 132}, {89, 133}, {90, 134}, {91, 135}, {120, 164}, {121, 165}, {122, 166}, {123, 167}, {25, 196}, {27, 198}, {26, 197}, {32, 203}, {36, 207}, {96, 140}, {97, 141}, {98, 142}, {99, 143}, {112, 156}, {113, 157}, {114, 158}, {115, 159}, {33, 204}, {35, 206}, {34, 205}, {100, 144}, {101, 145}, {102, 146}, {103, 147}, {108, 152}, {109, 153}, {110, 154}, {111, 155}, {37, 208}, {39, 210}, {38, 209}, {40, 211}, {44, 215}, {104, 148}, {105, 149}, {106, 150}, {107, 151}, {41, 212}, {43, 214}, {42, 213}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 172)(3, 128)(4, 84)(5, 40)(6, 211)(7, 167)(8, 123)(9, 79)(10, 35)(11, 206)(12, 162)(13, 118)(14, 74)(15, 30)(16, 201)(17, 157)(18, 113)(19, 69)(20, 25)(21, 196)(22, 152)(23, 108)(24, 64)(26, 191)(27, 147)(28, 103)(29, 59)(31, 186)(32, 142)(33, 98)(34, 54)(36, 181)(37, 137)(38, 93)(39, 49)(41, 176)(42, 132)(43, 88)(45, 215)(46, 171)(47, 127)(48, 83)(50, 210)(51, 166)(52, 122)(53, 78)(55, 205)(56, 161)(57, 117)(58, 73)(60, 200)(61, 156)(62, 112)(63, 68)(65, 195)(66, 151)(67, 107)(70, 190)(71, 146)(72, 102)(75, 185)(76, 141)(77, 97)(80, 180)(81, 136)(82, 92)(85, 175)(86, 131)(89, 214)(90, 170)(91, 126)(94, 209)(95, 165)(96, 121)(99, 204)(100, 160)(101, 116)(104, 199)(105, 155)(106, 111)(109, 194)(110, 150)(114, 189)(115, 145)(119, 184)(120, 140)(124, 179)(125, 135)(129, 174)(133, 213)(134, 169)(138, 208)(139, 164)(143, 203)(144, 159)(148, 198)(149, 154)(153, 193)(158, 188)(163, 183)(168, 178)(177, 212)(182, 207)(187, 202)(192, 197)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215)
c: (2, 45)(3, 89)(4, 133)(5, 177)(7, 50)(8, 94)(9, 138)(10, 182)(12, 55)(13, 99)(14, 143)(15, 187)(17, 60)(18, 104)(19, 148)(20, 192)(22, 65)(23, 109)(24, 153)(25, 197)(27, 70)(28, 114)(29, 158)(30, 202)(32, 75)(33, 119)(34, 163)(35, 207)(37, 80)(38, 124)(39, 168)(40, 212)(42, 85)(43, 129)(44, 173)(47, 90)(48, 134)(49, 178)(52, 95)(53, 139)(54, 183)(57, 100)(58, 144)(59, 188)(62, 105)(63, 149)(64, 193)(67, 110)(68, 154)(69, 198)(72, 115)(73, 159)(74, 203)(77, 120)(78, 164)(79, 208)(82, 125)(83, 169)(84, 213)(87, 130)(88, 174)(92, 135)(93, 179)(97, 140)(98, 184)(102, 145)(103, 189)(107, 150)(108, 194)(112, 155)(113, 199)(117, 160)(118, 204)(122, 165)(123, 209)(127, 170)(128, 214)(132, 175)(137, 180)(142, 185)(147, 190)(152, 195)(157, 200)(162, 205)(167, 210)(172, 215)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 215, 1 ]
215
-1 45 2 215 172
-2 1 46 3 173
-3 2 47 4 174
-4 3 48 5 175
-5 176 4 49 6
-6 177 5 50 7
-7 178 6 51 8
-8 179 7 52 9
-9 180 8 53 10
-10 11 181 9 54
-11 55 12 182 10
-12 11 56 13 183
-13 12 57 14 184
-14 13 58 15 185
-15 14 59 16 186
-16 187 15 60 17
-17 188 16 61 18
-18 189 17 62 19
-19 190 18 63 20
-20 191 19 64 21
-21 22 192 20 65
-22 66 23 193 21
-23 22 67 24 194
-24 23 68 25 195
-25 24 69 26 196
-26 25 70 27 197
-27 198 26 71 28
-28 199 27 72 29
-29 200 28 73 30
-30 201 29 74 31
-31 202 30 75 32
-32 33 203 31 76
-33 77 34 204 32
-34 33 78 35 205
-35 34 79 36 206
-36 35 80 37 207
-37 36 81 38 208
-38 209 37 82 39
-39 210 38 83 40
-40 211 39 84 41
-41 212 40 85 42
-42 213 41 86 43
-43 44 214 42 87
-44 88 45 215 43
-45 44 1 89 46
-46 45 2 90 47
-47 46 3 91 48
-48 47 4 92 49
-49 48 5 93 50
-50 49 6 94 51
-51 50 7 95 52
-52 51 8 96 53
-53 52 9 97 54
-54 55 53 10 98
-55 11 99 56 54
-56 55 12 100 57
-57 56 13 101 58
-58 57 14 102 59
-59 58 15 103 60
-60 59 16 104 61
-61 60 17 105 62
-62 61 18 106 63
-63 62 19 107 64
-64 63 20 108 65
-65 66 64 21 109
-66 22 110 67 65
-67 66 23 111 68
-68 67 24 112 69
-69 68 25 113 70
-70 69 26 114 71
-71 70 27 115 72
-72 71 28 116 73
-73 72 29 117 74
-74 73 30 118 75
-75 74 31 119 76
-76 77 75 32 120
-77 33 121 78 76
-78 77 34 122 79
-79 78 35 123 80
-80 79 36 124 81
-81 80 37 125 82
-82 81 38 126 83
-83 82 39 127 84
-84 83 40 128 85
-85 84 41 129 86
-86 85 42 130 87
-87 88 86 43 131
-88 44 132 89 87
-89 88 45 133 90
-90 89 46 134 91
-91 90 47 135 92
-92 91 48 136 93
-93 92 49 137 94
-94 93 50 138 95
-95 94 51 139 96
-96 95 52 140 97
-97 96 53 141 98
-98 99 97 54 142
-99 55 143 100 98
-100 99 56 144 101
-101 100 57 145 102
-102 101 58 146 103
-103 102 59 147 104
-104 103 60 148 105
-105 104 61 149 106
-106 105 62 150 107
-107 106 63 151 108
-108 107 64 152 109
-109 110 108 65 153
-110 66 154 111 109
-111 110 67 155 112
-112 111 68 156 113
-113 112 69 157 114
-114 113 70 158 115
-115 114 71 159 116
-116 115 72 160 117
-117 116 73 161 118
-118 117 74 162 119
-119 118 75 163 120
-120 121 119 76 164
-121 77 165 122 120
-122 121 78 166 123
-123 122 79 167 124
-124 123 80 168 125
-125 124 81 169 126
-126 125 82 170 127
-127 126 83 171 128
-128 127 84 172 129
-129 128 85 173 130
-130 129 86 174 131
-131 132 130 87 175
-132 88 176 133 131
-133 132 89 177 134
-134 133 90 178 135
-135 134 91 179 136
-136 135 92 180 137
-137 136 93 181 138
-138 137 94 182 139
-139 138 95 183 140
-140 139 96 184 141
-141 140 97 185 142
-142 143 141 98 186
-143 99 187 144 142
-144 143 100 188 145
-145 144 101 189 146
-146 145 102 190 147
-147 146 103 191 148
-148 147 104 192 149
-149 148 105 193 150
-150 149 106 194 151
-151 150 107 195 152
-152 151 108 196 153
-153 154 152 109 197
-154 110 198 155 153
-155 154 111 199 156
-156 155 112 200 157
-157 156 113 201 158
-158 157 114 202 159
-159 158 115 203 160
-160 159 116 204 161
-161 160 117 205 162
-162 161 118 206 163
-163 162 119 207 164
-164 165 163 120 208
-165 121 209 166 164
-166 165 122 210 167
-167 166 123 211 168
-168 167 124 212 169
-169 168 125 213 170
-170 169 126 214 171
-171 170 127 215 172
-172 1 171 128 173
-173 2 172 129 174
-174 3 173 130 175
-175 176 4 174 131
-176 132 177 5 175
-177 176 133 178 6
-178 177 134 179 7
-179 178 135 180 8
-180 179 136 181 9
-181 180 137 182 10
-182 11 181 138 183
-183 12 182 139 184
-184 13 183 140 185
-185 14 184 141 186
-186 187 15 185 142
-187 143 188 16 186
-188 187 144 189 17
-189 188 145 190 18
-190 189 146 191 19
-191 190 147 192 20
-192 191 148 193 21
-193 22 192 149 194
-194 23 193 150 195
-195 24 194 151 196
-196 25 195 152 197
-197 198 26 196 153
-198 154 199 27 197
-199 198 155 200 28
-200 199 156 201 29
-201 200 157 202 30
-202 201 158 203 31
-203 202 159 204 32
-204 33 203 160 205
-205 34 204 161 206
-206 35 205 162 207
-207 36 206 163 208
-208 209 37 207 164
-209 165 210 38 208
-210 209 166 211 39
-211 210 167 212 40
-212 211 168 213 41
-213 212 169 214 42
-214 213 170 215 43
-215 44 1 214 171
0

**************