C4graphGraph forms for C4 [ 216, 3 ] = C_216(1,55)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 3 ] = C_216(1,55).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {2, 3}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {1, 2}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {3, 4}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207, 208}, {175, 176}, {47, 48}, {79, 80}, {111, 112}, {143, 144}, {8, 63}, {72, 127}, {64, 119}, {128, 183}, {136, 191}, {1, 56}, {71, 126}, {69, 124}, {67, 122}, {65, 120}, {3, 58}, {5, 60}, {7, 62}, {129, 184}, {131, 186}, {133, 188}, {135, 190}, {2, 57}, {70, 125}, {66, 121}, {6, 61}, {130, 185}, {134, 189}, {4, 59}, {159, 160}, {68, 123}, {31, 32}, {95, 96}, {132, 187}, {9, 64}, {159, 214}, {157, 212}, {155, 210}, {153, 208}, {63, 118}, {61, 116}, {59, 114}, {57, 112}, {47, 102}, {45, 100}, {11, 66}, {13, 68}, {15, 70}, {25, 80}, {27, 82}, {29, 84}, {31, 86}, {41, 96}, {43, 98}, {137, 192}, {139, 194}, {141, 196}, {143, 198}, {10, 65}, {158, 213}, {154, 209}, {62, 117}, {58, 113}, {46, 101}, {14, 69}, {26, 81}, {30, 85}, {42, 97}, {138, 193}, {142, 197}, {12, 67}, {156, 211}, {60, 115}, {44, 99}, {28, 83}, {140, 195}, {16, 71}, {152, 207}, {56, 111}, {48, 103}, {24, 79}, {144, 199}, {17, 72}, {151, 206}, {149, 204}, {147, 202}, {55, 110}, {53, 108}, {51, 106}, {49, 104}, {19, 74}, {21, 76}, {23, 78}, {145, 200}, {18, 73}, {150, 205}, {54, 109}, {50, 105}, {22, 77}, {146, 201}, {20, 75}, {148, 203}, {52, 107}, {32, 87}, {160, 215}, {40, 95}, {33, 88}, {161, 216}, {35, 90}, {37, 92}, {39, 94}, {34, 89}, {38, 93}, {36, 91}, {191, 192}, {63, 64}, {2, 163}, {4, 165}, {6, 167}, {8, 169}, {10, 171}, {12, 173}, {14, 175}, {16, 177}, {18, 179}, {20, 181}, {22, 183}, {24, 185}, {26, 187}, {28, 189}, {30, 191}, {1, 162}, {5, 166}, {9, 170}, {13, 174}, {17, 178}, {21, 182}, {25, 186}, {29, 190}, {3, 164}, {11, 172}, {19, 180}, {27, 188}, {7, 168}, {23, 184}, {15, 176}, {73, 128}, {77, 132}, {75, 130}, {79, 134}, {89, 144}, {91, 146}, {93, 148}, {95, 150}, {105, 160}, {107, 162}, {109, 164}, {111, 166}, {121, 176}, {123, 178}, {125, 180}, {127, 182}, {74, 129}, {78, 133}, {90, 145}, {94, 149}, {106, 161}, {110, 165}, {122, 177}, {126, 181}, {76, 131}, {92, 147}, {108, 163}, {124, 179}, {80, 135}, {88, 143}, {112, 167}, {120, 175}, {1, 216}, {81, 136}, {83, 138}, {85, 140}, {87, 142}, {113, 168}, {115, 170}, {117, 172}, {119, 174}, {82, 137}, {86, 141}, {114, 169}, {118, 173}, {31, 192}, {84, 139}, {116, 171}, {32, 193}, {54, 215}, {52, 213}, {50, 211}, {48, 209}, {46, 207}, {44, 205}, {34, 195}, {36, 197}, {38, 199}, {40, 201}, {42, 203}, {33, 194}, {53, 214}, {49, 210}, {45, 206}, {37, 198}, {41, 202}, {35, 196}, {51, 212}, {43, 204}, {39, 200}, {55, 216}, {96, 151}, {104, 159}, {97, 152}, {99, 154}, {101, 156}, {103, 158}, {98, 153}, {102, 157}, {47, 208}, {100, 155}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 56)(3, 111)(4, 166)(6, 60)(7, 115)(8, 170)(10, 64)(11, 119)(12, 174)(14, 68)(15, 123)(16, 178)(18, 72)(19, 127)(20, 182)(22, 76)(23, 131)(24, 186)(26, 80)(27, 135)(28, 190)(30, 84)(31, 139)(32, 194)(34, 88)(35, 143)(36, 198)(38, 92)(39, 147)(40, 202)(42, 96)(43, 151)(44, 206)(46, 100)(47, 155)(48, 210)(50, 104)(51, 159)(52, 214)(54, 108)(55, 163)(58, 112)(59, 167)(62, 116)(63, 171)(66, 120)(67, 175)(70, 124)(71, 179)(74, 128)(75, 183)(78, 132)(79, 187)(82, 136)(83, 191)(86, 140)(87, 195)(90, 144)(91, 199)(94, 148)(95, 203)(98, 152)(99, 207)(102, 156)(103, 211)(106, 160)(107, 215)(110, 164)(114, 168)(118, 172)(122, 176)(126, 180)(130, 184)(134, 188)(138, 192)(142, 196)(146, 200)(150, 204)(154, 208)(158, 212)(162, 216)
b: (2, 162)(3, 107)(4, 52)(5, 213)(6, 158)(7, 103)(8, 48)(9, 209)(10, 154)(11, 99)(12, 44)(13, 205)(14, 150)(15, 95)(16, 40)(17, 201)(18, 146)(19, 91)(20, 36)(21, 197)(22, 142)(23, 87)(24, 32)(25, 193)(26, 138)(27, 83)(29, 189)(30, 134)(31, 79)(33, 185)(34, 130)(35, 75)(37, 181)(38, 126)(39, 71)(41, 177)(42, 122)(43, 67)(45, 173)(46, 118)(47, 63)(49, 169)(50, 114)(51, 59)(53, 165)(54, 110)(56, 216)(57, 161)(58, 106)(60, 212)(61, 157)(62, 102)(64, 208)(65, 153)(66, 98)(68, 204)(69, 149)(70, 94)(72, 200)(73, 145)(74, 90)(76, 196)(77, 141)(78, 86)(80, 192)(81, 137)(84, 188)(85, 133)(88, 184)(89, 129)(92, 180)(93, 125)(96, 176)(97, 121)(100, 172)(101, 117)(104, 168)(105, 113)(108, 164)(111, 215)(112, 160)(115, 211)(116, 156)(119, 207)(120, 152)(123, 203)(124, 148)(127, 199)(128, 144)(131, 195)(132, 140)(135, 191)(139, 187)(143, 183)(147, 179)(151, 175)(155, 171)(159, 167)(166, 214)(170, 210)(174, 206)(178, 202)(182, 198)(186, 194)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 3 ]
216
-1 56 2 216 162
-2 1 57 3 163
-3 2 58 4 164
-4 165 3 59 5
-5 166 4 60 6
-6 167 5 61 7
-7 168 6 62 8
-8 169 7 63 9
-9 170 8 64 10
-10 11 171 9 65
-11 66 12 172 10
-12 11 67 13 173
-13 12 68 14 174
-14 13 69 15 175
-15 176 14 70 16
-16 177 15 71 17
-17 178 16 72 18
-18 179 17 73 19
-19 180 18 74 20
-20 181 19 75 21
-21 22 182 20 76
-22 77 23 183 21
-23 22 78 24 184
-24 23 79 25 185
-25 24 80 26 186
-26 187 25 81 27
-27 188 26 82 28
-28 189 27 83 29
-29 190 28 84 30
-30 191 29 85 31
-31 192 30 86 32
-32 33 193 31 87
-33 88 34 194 32
-34 33 89 35 195
-35 34 90 36 196
-36 35 91 37 197
-37 198 36 92 38
-38 199 37 93 39
-39 200 38 94 40
-40 201 39 95 41
-41 202 40 96 42
-42 203 41 97 43
-43 44 204 42 98
-44 99 45 205 43
-45 44 100 46 206
-46 45 101 47 207
-47 46 102 48 208
-48 209 47 103 49
-49 210 48 104 50
-50 211 49 105 51
-51 212 50 106 52
-52 213 51 107 53
-53 214 52 108 54
-54 55 215 53 109
-55 110 56 216 54
-56 55 1 111 57
-57 56 2 112 58
-58 57 3 113 59
-59 58 4 114 60
-60 59 5 115 61
-61 60 6 116 62
-62 61 7 117 63
-63 62 8 118 64
-64 63 9 119 65
-65 66 64 10 120
-66 11 121 67 65
-67 66 12 122 68
-68 67 13 123 69
-69 68 14 124 70
-70 69 15 125 71
-71 70 16 126 72
-72 71 17 127 73
-73 72 18 128 74
-74 73 19 129 75
-75 74 20 130 76
-76 77 75 21 131
-77 22 132 78 76
-78 77 23 133 79
-79 78 24 134 80
-80 79 25 135 81
-81 80 26 136 82
-82 81 27 137 83
-83 82 28 138 84
-84 83 29 139 85
-85 84 30 140 86
-86 85 31 141 87
-87 88 86 32 142
-88 33 143 89 87
-89 88 34 144 90
-90 89 35 145 91
-91 90 36 146 92
-92 91 37 147 93
-93 92 38 148 94
-94 93 39 149 95
-95 94 40 150 96
-96 95 41 151 97
-97 96 42 152 98
-98 99 97 43 153
-99 44 154 100 98
-100 99 45 155 101
-101 100 46 156 102
-102 101 47 157 103
-103 102 48 158 104
-104 103 49 159 105
-105 104 50 160 106
-106 105 51 161 107
-107 106 52 162 108
-108 107 53 163 109
-109 110 108 54 164
-110 55 165 111 109
-111 110 56 166 112
-112 111 57 167 113
-113 112 58 168 114
-114 113 59 169 115
-115 114 60 170 116
-116 115 61 171 117
-117 116 62 172 118
-118 117 63 173 119
-119 118 64 174 120
-120 121 119 65 175
-121 66 176 122 120
-122 121 67 177 123
-123 122 68 178 124
-124 123 69 179 125
-125 124 70 180 126
-126 125 71 181 127
-127 126 72 182 128
-128 127 73 183 129
-129 128 74 184 130
-130 129 75 185 131
-131 132 130 76 186
-132 77 187 133 131
-133 132 78 188 134
-134 133 79 189 135
-135 134 80 190 136
-136 135 81 191 137
-137 136 82 192 138
-138 137 83 193 139
-139 138 84 194 140
-140 139 85 195 141
-141 140 86 196 142
-142 143 141 87 197
-143 88 198 144 142
-144 143 89 199 145
-145 144 90 200 146
-146 145 91 201 147
-147 146 92 202 148
-148 147 93 203 149
-149 148 94 204 150
-150 149 95 205 151
-151 150 96 206 152
-152 151 97 207 153
-153 154 152 98 208
-154 99 209 155 153
-155 154 100 210 156
-156 155 101 211 157
-157 156 102 212 158
-158 157 103 213 159
-159 158 104 214 160
-160 159 105 215 161
-161 160 106 216 162
-162 1 161 107 163
-163 2 162 108 164
-164 165 3 163 109
-165 110 166 4 164
-166 165 111 167 5
-167 166 112 168 6
-168 167 113 169 7
-169 168 114 170 8
-170 169 115 171 9
-171 170 116 172 10
-172 11 171 117 173
-173 12 172 118 174
-174 13 173 119 175
-175 176 14 174 120
-176 121 177 15 175
-177 176 122 178 16
-178 177 123 179 17
-179 178 124 180 18
-180 179 125 181 19
-181 180 126 182 20
-182 181 127 183 21
-183 22 182 128 184
-184 23 183 129 185
-185 24 184 130 186
-186 187 25 185 131
-187 132 188 26 186
-188 187 133 189 27
-189 188 134 190 28
-190 189 135 191 29
-191 190 136 192 30
-192 191 137 193 31
-193 192 138 194 32
-194 33 193 139 195
-195 34 194 140 196
-196 35 195 141 197
-197 198 36 196 142
-198 143 199 37 197
-199 198 144 200 38
-200 199 145 201 39
-201 200 146 202 40
-202 201 147 203 41
-203 202 148 204 42
-204 203 149 205 43
-205 44 204 150 206
-206 45 205 151 207
-207 46 206 152 208
-208 209 47 207 153
-209 154 210 48 208
-210 209 155 211 49
-211 210 156 212 50
-212 211 157 213 51
-213 212 158 214 52
-214 213 159 215 53
-215 214 160 216 54
-216 55 1 215 161
0

**************