C4graphGraph forms for C4 [ 216, 5 ] = {4,4}_[12,9]

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 5 ] = {4,4}_[12,9].

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {2, 3}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {142, 143}, {140, 141}, {138, 139}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {1, 2}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {3, 4}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {1, 73}, {144, 216}, {55, 127}, {54, 126}, {53, 125}, {52, 124}, {51, 123}, {50, 122}, {49, 121}, {48, 120}, {2, 74}, {3, 75}, {4, 76}, {5, 77}, {6, 78}, {7, 79}, {16, 88}, {17, 89}, {18, 90}, {19, 91}, {20, 92}, {21, 93}, {22, 94}, {23, 95}, {32, 104}, {33, 105}, {34, 106}, {35, 107}, {36, 108}, {37, 109}, {38, 110}, {39, 111}, {128, 200}, {129, 201}, {130, 202}, {131, 203}, {132, 204}, {133, 205}, {134, 206}, {135, 207}, {1, 72}, {145, 216}, {8, 80}, {143, 215}, {142, 214}, {141, 213}, {140, 212}, {139, 211}, {138, 210}, {137, 209}, {47, 119}, {46, 118}, {45, 117}, {44, 116}, {43, 115}, {42, 114}, {9, 81}, {10, 82}, {11, 83}, {12, 84}, {13, 85}, {14, 86}, {15, 87}, {40, 112}, {41, 113}, {136, 208}, {24, 96}, {25, 97}, {26, 98}, {27, 99}, {28, 100}, {29, 101}, {30, 102}, {31, 103}, {63, 64}, {191, 192}, {23, 146}, {69, 192}, {63, 186}, {61, 184}, {55, 178}, {53, 176}, {47, 170}, {45, 168}, {29, 152}, {31, 154}, {37, 160}, {39, 162}, {71, 194}, {22, 145}, {62, 185}, {54, 177}, {46, 169}, {30, 153}, {38, 161}, {70, 193}, {24, 147}, {60, 183}, {56, 179}, {44, 167}, {28, 151}, {40, 163}, {72, 195}, {25, 148}, {59, 182}, {57, 180}, {43, 166}, {41, 164}, {27, 150}, {26, 149}, {58, 181}, {42, 165}, {48, 171}, {52, 175}, {49, 172}, {51, 174}, {50, 173}, {56, 128}, {63, 135}, {62, 134}, {61, 133}, {60, 132}, {59, 131}, {58, 130}, {57, 129}, {120, 192}, {121, 193}, {122, 194}, {123, 195}, {124, 196}, {125, 197}, {126, 198}, {127, 199}, {32, 155}, {36, 159}, {33, 156}, {35, 158}, {34, 157}, {4, 199}, {8, 203}, {12, 207}, {16, 211}, {20, 215}, {1, 196}, {3, 198}, {9, 204}, {11, 206}, {17, 212}, {19, 214}, {2, 197}, {10, 205}, {18, 213}, {64, 136}, {69, 141}, {68, 140}, {67, 139}, {66, 138}, {65, 137}, {70, 142}, {71, 143}, {80, 152}, {81, 153}, {82, 154}, {83, 155}, {84, 156}, {85, 157}, {86, 158}, {87, 159}, {96, 168}, {97, 169}, {98, 170}, {99, 171}, {100, 172}, {101, 173}, {102, 174}, {103, 175}, {112, 184}, {113, 185}, {114, 186}, {115, 187}, {116, 188}, {117, 189}, {118, 190}, {119, 191}, {5, 200}, {7, 202}, {21, 216}, {6, 201}, {72, 144}, {73, 145}, {74, 146}, {75, 147}, {76, 148}, {77, 149}, {78, 150}, {79, 151}, {104, 176}, {105, 177}, {106, 178}, {107, 179}, {108, 180}, {109, 181}, {110, 182}, {111, 183}, {73, 144}, {13, 208}, {15, 210}, {14, 209}, {88, 160}, {89, 161}, {90, 162}, {91, 163}, {92, 164}, {93, 165}, {94, 166}, {95, 167}, {64, 187}, {68, 191}, {65, 188}, {67, 190}, {66, 189}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 73)(3, 145)(4, 22)(5, 94)(6, 166)(7, 43)(8, 115)(9, 187)(10, 64)(11, 136)(12, 208)(14, 85)(15, 157)(16, 34)(17, 106)(18, 178)(19, 55)(20, 127)(21, 199)(23, 76)(24, 148)(26, 97)(27, 169)(28, 46)(29, 118)(30, 190)(31, 67)(32, 139)(33, 211)(35, 88)(36, 160)(38, 109)(39, 181)(40, 58)(41, 130)(42, 202)(44, 79)(45, 151)(47, 100)(48, 172)(50, 121)(51, 193)(52, 70)(53, 142)(54, 214)(56, 91)(57, 163)(59, 112)(60, 184)(62, 133)(63, 205)(65, 82)(66, 154)(68, 103)(69, 175)(71, 124)(72, 196)(75, 146)(77, 95)(78, 167)(80, 116)(81, 188)(83, 137)(84, 209)(87, 158)(89, 107)(90, 179)(92, 128)(93, 200)(96, 149)(99, 170)(101, 119)(102, 191)(104, 140)(105, 212)(108, 161)(111, 182)(113, 131)(114, 203)(117, 152)(120, 173)(123, 194)(125, 143)(126, 215)(129, 164)(132, 185)(135, 206)(138, 155)(141, 176)(144, 197)(150, 168)(153, 189)(156, 210)(162, 180)(165, 201)(174, 192)(177, 213)(186, 204)(198, 216)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)(145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216)
c: (2, 196)(3, 124)(4, 52)(5, 175)(6, 103)(7, 31)(8, 154)(9, 82)(11, 205)(12, 133)(13, 61)(14, 184)(15, 112)(16, 40)(17, 163)(18, 91)(20, 214)(21, 142)(22, 70)(23, 193)(24, 121)(25, 49)(26, 172)(27, 100)(29, 151)(30, 79)(32, 202)(33, 130)(34, 58)(35, 181)(36, 109)(38, 160)(39, 88)(41, 211)(42, 139)(43, 67)(44, 190)(45, 118)(47, 169)(48, 97)(50, 148)(51, 76)(53, 199)(54, 127)(56, 178)(57, 106)(59, 157)(60, 85)(62, 208)(63, 136)(65, 187)(66, 115)(68, 166)(69, 94)(71, 145)(72, 73)(74, 195)(75, 123)(77, 174)(78, 102)(80, 153)(83, 204)(84, 132)(86, 183)(87, 111)(89, 162)(92, 213)(93, 141)(95, 192)(96, 120)(98, 171)(101, 150)(104, 201)(105, 129)(107, 180)(110, 159)(113, 210)(114, 138)(116, 189)(119, 168)(122, 147)(125, 198)(128, 177)(131, 156)(134, 207)(137, 186)(140, 165)(143, 216)(146, 194)(149, 173)(155, 203)(158, 182)(164, 212)(167, 191)(176, 200)(185, 209)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 5 ]
216
-1 2 72 73 196
-2 1 3 74 197
-3 198 2 4 75
-4 199 3 5 76
-5 77 200 4 6
-6 78 201 5 7
-7 79 202 6 8
-8 80 203 7 9
-9 81 204 8 10
-10 11 82 205 9
-11 12 83 206 10
-12 11 13 84 207
-13 12 14 85 208
-14 209 13 15 86
-15 210 14 16 87
-16 88 211 15 17
-17 89 212 16 18
-18 90 213 17 19
-19 91 214 18 20
-20 92 215 19 21
-21 22 93 216 20
-22 23 145 94 21
-23 22 24 146 95
-24 23 25 147 96
-25 24 26 148 97
-26 25 27 149 98
-27 99 26 28 150
-28 100 27 29 151
-29 101 28 30 152
-30 102 29 31 153
-31 154 103 30 32
-32 33 155 104 31
-33 34 156 105 32
-34 33 35 157 106
-35 34 36 158 107
-36 35 37 159 108
-37 36 38 160 109
-38 110 37 39 161
-39 111 38 40 162
-40 112 39 41 163
-41 113 40 42 164
-42 165 114 41 43
-43 44 166 115 42
-44 45 167 116 43
-45 44 46 168 117
-46 45 47 169 118
-47 46 48 170 119
-48 47 49 171 120
-49 121 48 50 172
-50 122 49 51 173
-51 123 50 52 174
-52 124 51 53 175
-53 176 125 52 54
-54 55 177 126 53
-55 56 178 127 54
-56 55 57 179 128
-57 56 58 180 129
-58 57 59 181 130
-59 58 60 182 131
-60 132 59 61 183
-61 133 60 62 184
-62 134 61 63 185
-63 135 62 64 186
-64 187 136 63 65
-65 66 188 137 64
-66 67 189 138 65
-67 66 68 190 139
-68 67 69 191 140
-69 68 70 192 141
-70 69 71 193 142
-71 143 70 72 194
-72 1 144 71 195
-73 1 144 145 74
-74 2 146 73 75
-75 3 147 74 76
-76 77 4 148 75
-77 78 5 149 76
-78 77 79 6 150
-79 78 80 7 151
-80 79 81 8 152
-81 80 82 9 153
-82 154 81 83 10
-83 11 155 82 84
-84 12 156 83 85
-85 13 157 84 86
-86 14 158 85 87
-87 88 15 159 86
-88 89 16 160 87
-89 88 90 17 161
-90 89 91 18 162
-91 90 92 19 163
-92 91 93 20 164
-93 165 92 94 21
-94 22 166 93 95
-95 23 167 94 96
-96 24 168 95 97
-97 25 169 96 98
-98 99 26 170 97
-99 100 27 171 98
-100 99 101 28 172
-101 100 102 29 173
-102 101 103 30 174
-103 102 104 31 175
-104 176 103 105 32
-105 33 177 104 106
-106 34 178 105 107
-107 35 179 106 108
-108 36 180 107 109
-109 110 37 181 108
-110 111 38 182 109
-111 110 112 39 183
-112 111 113 40 184
-113 112 114 41 185
-114 113 115 42 186
-115 187 114 116 43
-116 44 188 115 117
-117 45 189 116 118
-118 46 190 117 119
-119 47 191 118 120
-120 121 48 192 119
-121 122 49 193 120
-122 121 123 50 194
-123 122 124 51 195
-124 123 125 52 196
-125 124 126 53 197
-126 198 125 127 54
-127 55 199 126 128
-128 56 200 127 129
-129 57 201 128 130
-130 58 202 129 131
-131 132 59 203 130
-132 133 60 204 131
-133 132 134 61 205
-134 133 135 62 206
-135 134 136 63 207
-136 135 137 64 208
-137 209 136 138 65
-138 66 210 137 139
-139 67 211 138 140
-140 68 212 139 141
-141 69 213 140 142
-142 143 70 214 141
-143 144 71 215 142
-144 143 72 73 216
-145 22 146 73 216
-146 23 145 147 74
-147 24 146 148 75
-148 25 147 149 76
-149 77 26 148 150
-150 78 27 149 151
-151 79 28 150 152
-152 80 29 151 153
-153 154 81 30 152
-154 155 82 31 153
-155 154 156 83 32
-156 33 155 157 84
-157 34 156 158 85
-158 35 157 159 86
-159 36 158 160 87
-160 88 37 159 161
-161 89 38 160 162
-162 90 39 161 163
-163 91 40 162 164
-164 165 92 41 163
-165 166 93 42 164
-166 165 167 94 43
-167 44 166 168 95
-168 45 167 169 96
-169 46 168 170 97
-170 47 169 171 98
-171 99 48 170 172
-172 100 49 171 173
-173 101 50 172 174
-174 102 51 173 175
-175 176 103 52 174
-176 177 104 53 175
-177 176 178 105 54
-178 55 177 179 106
-179 56 178 180 107
-180 57 179 181 108
-181 58 180 182 109
-182 110 59 181 183
-183 111 60 182 184
-184 112 61 183 185
-185 113 62 184 186
-186 187 114 63 185
-187 188 115 64 186
-188 187 189 116 65
-189 66 188 190 117
-190 67 189 191 118
-191 68 190 192 119
-192 69 191 193 120
-193 121 70 192 194
-194 122 71 193 195
-195 123 72 194 196
-196 1 124 195 197
-197 198 2 125 196
-198 199 3 126 197
-199 198 200 4 127
-200 199 201 5 128
-201 200 202 6 129
-202 201 203 7 130
-203 202 204 8 131
-204 132 203 205 9
-205 133 204 206 10
-206 11 134 205 207
-207 12 135 206 208
-208 209 13 136 207
-209 210 14 137 208
-210 209 211 15 138
-211 210 212 16 139
-212 211 213 17 140
-213 212 214 18 141
-214 213 215 19 142
-215 143 214 216 20
-216 144 145 215 21
0

**************