C4graphGraph forms for C4 [ 216, 6 ] = {4,4}_<15,3>

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 6 ] = {4,4}_<15,3>.

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {2, 3}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {68, 69}, {70, 71}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {1, 2}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {3, 4}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {1, 73}, {144, 216}, {135, 207}, {134, 206}, {133, 205}, {55, 127}, {54, 126}, {53, 125}, {52, 124}, {51, 123}, {50, 122}, {49, 121}, {48, 120}, {2, 74}, {3, 75}, {4, 76}, {5, 77}, {6, 78}, {7, 79}, {16, 88}, {17, 89}, {18, 90}, {19, 91}, {20, 92}, {21, 93}, {22, 94}, {23, 95}, {32, 104}, {33, 105}, {34, 106}, {35, 107}, {36, 108}, {37, 109}, {38, 110}, {39, 111}, {128, 200}, {129, 201}, {130, 202}, {131, 203}, {132, 204}, {1, 72}, {145, 216}, {8, 80}, {143, 215}, {142, 214}, {141, 213}, {140, 212}, {139, 211}, {138, 210}, {137, 209}, {136, 208}, {47, 119}, {46, 118}, {45, 117}, {44, 116}, {43, 115}, {42, 114}, {41, 113}, {9, 81}, {10, 82}, {11, 83}, {12, 84}, {13, 85}, {14, 86}, {15, 87}, {40, 112}, {24, 96}, {25, 97}, {26, 98}, {27, 99}, {28, 100}, {29, 101}, {30, 102}, {31, 103}, {63, 64}, {191, 192}, {16, 145}, {66, 195}, {64, 193}, {62, 191}, {60, 189}, {58, 187}, {56, 185}, {54, 183}, {52, 181}, {50, 179}, {48, 177}, {46, 175}, {44, 173}, {42, 171}, {40, 169}, {18, 147}, {20, 149}, {22, 151}, {24, 153}, {26, 155}, {28, 157}, {30, 159}, {32, 161}, {34, 163}, {36, 165}, {38, 167}, {68, 197}, {70, 199}, {72, 201}, {17, 146}, {65, 194}, {61, 190}, {57, 186}, {53, 182}, {49, 178}, {45, 174}, {41, 170}, {21, 150}, {25, 154}, {29, 158}, {33, 162}, {37, 166}, {69, 198}, {19, 148}, {67, 196}, {59, 188}, {51, 180}, {43, 172}, {27, 156}, {35, 164}, {23, 152}, {55, 184}, {39, 168}, {71, 200}, {47, 176}, {56, 128}, {63, 135}, {62, 134}, {61, 133}, {60, 132}, {59, 131}, {58, 130}, {57, 129}, {120, 192}, {121, 193}, {122, 194}, {123, 195}, {124, 196}, {125, 197}, {126, 198}, {127, 199}, {31, 160}, {64, 136}, {67, 139}, {66, 138}, {65, 137}, {68, 140}, {69, 141}, {70, 142}, {71, 143}, {80, 152}, {81, 153}, {82, 154}, {83, 155}, {84, 156}, {85, 157}, {86, 158}, {87, 159}, {96, 168}, {97, 169}, {98, 170}, {99, 171}, {100, 172}, {101, 173}, {102, 174}, {103, 175}, {112, 184}, {113, 185}, {114, 186}, {115, 187}, {116, 188}, {117, 189}, {118, 190}, {119, 191}, {2, 203}, {4, 205}, {6, 207}, {1, 202}, {5, 206}, {3, 204}, {7, 208}, {15, 216}, {72, 144}, {73, 145}, {74, 146}, {75, 147}, {76, 148}, {77, 149}, {78, 150}, {79, 151}, {104, 176}, {105, 177}, {106, 178}, {107, 179}, {108, 180}, {109, 181}, {110, 182}, {111, 183}, {8, 209}, {10, 211}, {12, 213}, {14, 215}, {73, 144}, {9, 210}, {13, 214}, {11, 212}, {88, 160}, {89, 161}, {90, 162}, {91, 163}, {92, 164}, {93, 165}, {94, 166}, {95, 167}, {63, 192}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)(145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216)
b: (2, 73)(3, 145)(4, 16)(5, 88)(6, 160)(7, 31)(8, 103)(9, 175)(10, 46)(11, 118)(12, 190)(13, 61)(14, 133)(15, 205)(17, 76)(18, 148)(20, 91)(21, 163)(22, 34)(23, 106)(24, 178)(25, 49)(26, 121)(27, 193)(28, 64)(29, 136)(30, 208)(32, 79)(33, 151)(35, 94)(36, 166)(38, 109)(39, 181)(40, 52)(41, 124)(42, 196)(43, 67)(44, 139)(45, 211)(47, 82)(48, 154)(50, 97)(51, 169)(53, 112)(54, 184)(56, 127)(57, 199)(58, 70)(59, 142)(60, 214)(62, 85)(63, 157)(65, 100)(66, 172)(68, 115)(69, 187)(71, 130)(72, 202)(75, 146)(77, 89)(78, 161)(80, 104)(81, 176)(83, 119)(84, 191)(86, 134)(87, 206)(90, 149)(93, 164)(95, 107)(96, 179)(98, 122)(99, 194)(101, 137)(102, 209)(105, 152)(108, 167)(111, 182)(113, 125)(114, 197)(116, 140)(117, 212)(120, 155)(123, 170)(126, 185)(129, 200)(131, 143)(132, 215)(135, 158)(138, 173)(141, 188)(144, 203)(150, 162)(153, 177)(156, 192)(159, 207)(168, 180)(171, 195)(174, 210)(186, 198)(189, 213)(204, 216)
c: (2, 202)(3, 130)(4, 58)(5, 187)(6, 115)(7, 43)(8, 172)(9, 100)(10, 28)(11, 157)(12, 85)(14, 214)(15, 142)(16, 70)(17, 199)(18, 127)(19, 55)(20, 184)(21, 112)(22, 40)(23, 169)(24, 97)(26, 154)(27, 82)(29, 211)(30, 139)(31, 67)(32, 196)(33, 124)(34, 52)(35, 181)(36, 109)(38, 166)(39, 94)(41, 151)(42, 79)(44, 208)(45, 136)(46, 64)(47, 193)(48, 121)(50, 178)(51, 106)(53, 163)(54, 91)(56, 148)(57, 76)(59, 205)(60, 133)(62, 190)(63, 118)(65, 175)(66, 103)(68, 160)(69, 88)(71, 145)(72, 73)(74, 201)(75, 129)(77, 186)(78, 114)(80, 171)(81, 99)(83, 156)(86, 213)(87, 141)(89, 198)(90, 126)(92, 183)(93, 111)(95, 168)(98, 153)(101, 210)(102, 138)(104, 195)(105, 123)(107, 180)(110, 165)(113, 150)(116, 207)(117, 135)(119, 192)(122, 177)(125, 162)(128, 147)(131, 204)(134, 189)(137, 174)(140, 159)(143, 216)(146, 200)(149, 185)(152, 170)(158, 212)(161, 197)(164, 182)(173, 209)(176, 194)(188, 206)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 6 ]
216
-1 2 202 72 73
-2 1 3 203 74
-3 2 4 204 75
-4 3 5 205 76
-5 77 4 6 206
-6 78 5 7 207
-7 79 6 8 208
-8 209 80 7 9
-9 210 81 8 10
-10 11 211 82 9
-11 12 212 83 10
-12 11 13 213 84
-13 12 14 214 85
-14 13 15 215 86
-15 14 16 216 87
-16 88 145 15 17
-17 89 146 16 18
-18 90 147 17 19
-19 91 148 18 20
-20 92 149 19 21
-21 22 93 150 20
-22 23 94 151 21
-23 22 24 95 152
-24 23 25 96 153
-25 154 24 26 97
-26 155 25 27 98
-27 99 156 26 28
-28 100 157 27 29
-29 101 158 28 30
-30 102 159 29 31
-31 103 160 30 32
-32 33 104 161 31
-33 34 105 162 32
-34 33 35 106 163
-35 34 36 107 164
-36 165 35 37 108
-37 166 36 38 109
-38 110 167 37 39
-39 111 168 38 40
-40 112 169 39 41
-41 113 170 40 42
-42 114 171 41 43
-43 44 115 172 42
-44 45 116 173 43
-45 44 46 117 174
-46 45 47 118 175
-47 176 46 48 119
-48 177 47 49 120
-49 121 178 48 50
-50 122 179 49 51
-51 123 180 50 52
-52 124 181 51 53
-53 125 182 52 54
-54 55 126 183 53
-55 56 127 184 54
-56 55 57 128 185
-57 56 58 129 186
-58 187 57 59 130
-59 188 58 60 131
-60 132 189 59 61
-61 133 190 60 62
-62 134 191 61 63
-63 135 192 62 64
-64 136 193 63 65
-65 66 137 194 64
-66 67 138 195 65
-67 66 68 139 196
-68 67 69 140 197
-69 198 68 70 141
-70 199 69 71 142
-71 143 200 70 72
-72 1 144 201 71
-73 1 144 145 74
-74 2 146 73 75
-75 3 147 74 76
-76 77 4 148 75
-77 78 5 149 76
-78 77 79 6 150
-79 78 80 7 151
-80 79 81 8 152
-81 80 82 9 153
-82 154 81 83 10
-83 11 155 82 84
-84 12 156 83 85
-85 13 157 84 86
-86 14 158 85 87
-87 88 15 159 86
-88 89 16 160 87
-89 88 90 17 161
-90 89 91 18 162
-91 90 92 19 163
-92 91 93 20 164
-93 165 92 94 21
-94 22 166 93 95
-95 23 167 94 96
-96 24 168 95 97
-97 25 169 96 98
-98 99 26 170 97
-99 100 27 171 98
-100 99 101 28 172
-101 100 102 29 173
-102 101 103 30 174
-103 102 104 31 175
-104 176 103 105 32
-105 33 177 104 106
-106 34 178 105 107
-107 35 179 106 108
-108 36 180 107 109
-109 110 37 181 108
-110 111 38 182 109
-111 110 112 39 183
-112 111 113 40 184
-113 112 114 41 185
-114 113 115 42 186
-115 187 114 116 43
-116 44 188 115 117
-117 45 189 116 118
-118 46 190 117 119
-119 47 191 118 120
-120 121 48 192 119
-121 122 49 193 120
-122 121 123 50 194
-123 122 124 51 195
-124 123 125 52 196
-125 124 126 53 197
-126 198 125 127 54
-127 55 199 126 128
-128 56 200 127 129
-129 57 201 128 130
-130 58 202 129 131
-131 132 59 203 130
-132 133 60 204 131
-133 132 134 61 205
-134 133 135 62 206
-135 134 136 63 207
-136 135 137 64 208
-137 209 136 138 65
-138 66 210 137 139
-139 67 211 138 140
-140 68 212 139 141
-141 69 213 140 142
-142 143 70 214 141
-143 144 71 215 142
-144 143 72 73 216
-145 146 16 73 216
-146 145 147 17 74
-147 146 148 18 75
-148 147 149 19 76
-149 77 148 150 20
-150 78 149 151 21
-151 22 79 150 152
-152 23 80 151 153
-153 154 24 81 152
-154 155 25 82 153
-155 154 156 26 83
-156 155 157 27 84
-157 156 158 28 85
-158 157 159 29 86
-159 158 160 30 87
-160 88 159 161 31
-161 89 160 162 32
-162 33 90 161 163
-163 34 91 162 164
-164 165 35 92 163
-165 166 36 93 164
-166 165 167 37 94
-167 166 168 38 95
-168 167 169 39 96
-169 168 170 40 97
-170 169 171 41 98
-171 99 170 172 42
-172 100 171 173 43
-173 44 101 172 174
-174 45 102 173 175
-175 176 46 103 174
-176 177 47 104 175
-177 176 178 48 105
-178 177 179 49 106
-179 178 180 50 107
-180 179 181 51 108
-181 180 182 52 109
-182 110 181 183 53
-183 111 182 184 54
-184 55 112 183 185
-185 56 113 184 186
-186 187 57 114 185
-187 188 58 115 186
-188 187 189 59 116
-189 188 190 60 117
-190 189 191 61 118
-191 190 192 62 119
-192 191 193 63 120
-193 121 192 194 64
-194 122 193 195 65
-195 66 123 194 196
-196 67 124 195 197
-197 198 68 125 196
-198 199 69 126 197
-199 198 200 70 127
-200 199 201 71 128
-201 200 202 72 129
-202 1 201 203 130
-203 2 202 204 131
-204 132 3 203 205
-205 133 4 204 206
-206 134 5 205 207
-207 135 6 206 208
-208 209 136 7 207
-209 210 137 8 208
-210 209 211 138 9
-211 210 212 139 10
-212 11 211 213 140
-213 12 212 214 141
-214 13 213 215 142
-215 143 14 214 216
-216 144 145 15 215
0

**************