[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 216, 7 ] =
{4,4}_[18,6].
(I) Following is a form readable by MAGMA:
g:=Graph<216|{ {2, 3}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206,
207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195},
{192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {178,
179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167},
{164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {82,
83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {70, 71}, {68, 69}, {66, 67}, {64,
65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48,
49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15},
{16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {38, 39}, {40, 41}, {42, 43}, {84, 85}, {86, 87}, {88, 89},
{90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104,
105}, {106, 107}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119},
{120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132,
133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {146, 147},
{148, 149}, {150, 151}, {152, 153}, {1, 2}, {213, 214}, {209, 210}, {205, 206},
{201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177,
178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154},
{81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54},
{49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26},
{29, 30}, {33, 34}, {37, 38}, {41, 42}, {85, 86}, {89, 90}, {93, 94}, {97, 98},
{101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125,
126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150},
{3, 4}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172},
{163, 164}, {155, 156}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11,
12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108},
{115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {7, 8}, {215, 216},
{199, 200}, {183, 184}, {167, 168}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87,
88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {15, 16}, {207, 208}, {175,
176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {1, 37}, {155, 191}, {154,
190}, {153, 189}, {82, 118}, {81, 117}, {80, 116}, {75, 111}, {74, 110}, {73,
109}, {72, 108}, {67, 103}, {66, 102}, {65, 101}, {64, 100}, {2, 38}, {3, 39},
{8, 44}, {9, 45}, {10, 46}, {11, 47}, {16, 52}, {17, 53}, {18, 54}, {19, 55},
{24, 60}, {25, 61}, {26, 62}, {27, 63}, {83, 119}, {88, 124}, {89, 125}, {90,
126}, {91, 127}, {128, 164}, {129, 165}, {130, 166}, {131, 167}, {136, 172},
{137, 173}, {138, 174}, {139, 175}, {144, 180}, {145, 181}, {146, 182}, {147,
183}, {152, 188}, {1, 36}, {73, 108}, {145, 180}, {4, 40}, {71, 107}, {70, 106},
{69, 105}, {68, 104}, {5, 41}, {6, 42}, {7, 43}, {20, 56}, {21, 57}, {22, 58},
{23, 59}, {84, 120}, {85, 121}, {86, 122}, {87, 123}, {132, 168}, {133, 169},
{134, 170}, {135, 171}, {148, 184}, {149, 185}, {150, 186}, {151, 187}, {12,
48}, {79, 115}, {78, 114}, {77, 113}, {76, 112}, {13, 49}, {14, 50}, {15, 51},
{140, 176}, {141, 177}, {142, 178}, {143, 179}, {31, 32}, {159, 160}, {95, 96},
{28, 64}, {159, 195}, {158, 194}, {157, 193}, {156, 192}, {63, 99}, {62, 98},
{61, 97}, {60, 96}, {29, 65}, {30, 66}, {31, 67}, {32, 68}, {179, 215}, {178,
214}, {177, 213}, {176, 212}, {171, 207}, {170, 206}, {169, 205}, {168, 204},
{163, 199}, {162, 198}, {161, 197}, {160, 196}, {59, 95}, {58, 94}, {57, 93},
{56, 92}, {51, 87}, {50, 86}, {49, 85}, {48, 84}, {33, 69}, {34, 70}, {35, 71},
{40, 76}, {41, 77}, {42, 78}, {43, 79}, {36, 72}, {180, 216}, {167, 203}, {166,
202}, {165, 201}, {164, 200}, {55, 91}, {54, 90}, {53, 89}, {52, 88}, {37, 73},
{38, 74}, {39, 75}, {37, 72}, {181, 216}, {44, 80}, {175, 211}, {174, 210},
{173, 209}, {172, 208}, {47, 83}, {46, 82}, {45, 81}, {63, 64}, {191, 192}, {32,
182}, {33, 183}, {34, 184}, {35, 185}, {36, 186}, {31, 181}, {1, 187}, {4, 190},
{5, 191}, {2, 188}, {3, 189}, {6, 192}, {7, 193}, {14, 200}, {15, 201}, {22,
208}, {23, 209}, {30, 216}, {8, 194}, {9, 195}, {12, 198}, {13, 199}, {24, 210},
{25, 211}, {28, 214}, {29, 215}, {10, 196}, {11, 197}, {26, 212}, {27, 213},
{16, 202}, {17, 203}, {20, 206}, {21, 207}, {92, 128}, {93, 129}, {94, 130},
{95, 131}, {124, 160}, {125, 161}, {126, 162}, {127, 163}, {18, 204}, {19, 205},
{96, 132}, {97, 133}, {98, 134}, {99, 135}, {104, 140}, {105, 141}, {106, 142},
{107, 143}, {112, 148}, {113, 149}, {114, 150}, {115, 151}, {120, 156}, {121,
157}, {122, 158}, {123, 159}, {100, 136}, {101, 137}, {102, 138}, {103, 139},
{116, 152}, {117, 153}, {118, 154}, {119, 155}, {108, 144}, {109, 145}, {110,
146}, {111, 147}, {109, 144}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 187)(3, 151)(4, 115)(5, 79)(6, 43)(8, 193)(9, 157)(10, 121)(11, 85)(12,
49)(14, 199)(15, 163)(16, 127)(17, 91)(18, 55)(20, 205)(21, 169)(22, 133)(23,
97)(24, 61)(26, 211)(27, 175)(28, 139)(29, 103)(30, 67)(32, 181)(33, 145)(34,
109)(35, 73)(36, 37)(38, 186)(39, 150)(40, 114)(41, 78)(44, 192)(45, 156)(46,
120)(47, 84)(50, 198)(51, 162)(52, 126)(53, 90)(56, 204)(57, 168)(58, 132)(59,
96)(62, 210)(63, 174)(64, 138)(65, 102)(68, 216)(69, 180)(70, 144)(71, 108)(74,
185)(75, 149)(76, 113)(80, 191)(81, 155)(82, 119)(86, 197)(87, 161)(88, 125)(92,
203)(93, 167)(94, 131)(98, 209)(99, 173)(100, 137)(104, 215)(105, 179)(106,
143)(110, 184)(111, 148)(116, 190)(117, 154)(122, 196)(123, 160)(128, 202)(129,
166)(134, 208)(135, 172)(140, 214)(141, 178)(146, 183)(152, 189)(158, 195)(164,
201)(170, 207)(176, 213) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 37)(3, 73)(4, 109)(5, 145)(6, 181)(7, 31)(8, 67)(9, 103)(10, 139)(11,
175)(12, 211)(13, 25)(14, 61)(15, 97)(16, 133)(17, 169)(18, 205)(20, 55)(21,
91)(22, 127)(23, 163)(24, 199)(26, 49)(27, 85)(28, 121)(29, 157)(30, 193)(32,
43)(33, 79)(34, 115)(35, 151)(36, 187)(39, 74)(40, 110)(41, 146)(42, 182)(44,
68)(45, 104)(46, 140)(47, 176)(48, 212)(50, 62)(51, 98)(52, 134)(53, 170)(54,
206)(57, 92)(58, 128)(59, 164)(60, 200)(63, 86)(64, 122)(65, 158)(66, 194)(69,
80)(70, 116)(71, 152)(72, 188)(76, 111)(77, 147)(78, 183)(81, 105)(82, 141)(83,
177)(84, 213)(87, 99)(88, 135)(89, 171)(90, 207)(94, 129)(95, 165)(96, 201)(100,
123)(101, 159)(102, 195)(106, 117)(107, 153)(108, 189)(113, 148)(114, 184)(118,
142)(119, 178)(120, 214)(124, 136)(125, 172)(126, 208)(131, 166)(132, 202)(137,
160)(138, 196)(143, 154)(144, 190)(150, 185)(155, 179)(156, 215)(161, 173)(162,
209)(168, 203)(174, 197)(180, 191)(192, 216)(198, 210)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)(37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)(73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108)(109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144)(145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195,
196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211,
212, 213, 214, 215, 216)
C4[ 216, 7 ]
216
-1 187 2 36 37
-2 1 188 3 38
-3 2 189 4 39
-4 3 190 5 40
-5 4 191 6 41
-6 5 192 7 42
-7 6 193 8 43
-8 44 7 194 9
-9 45 8 195 10
-10 11 46 9 196
-11 12 47 10 197
-12 11 198 13 48
-13 12 199 14 49
-14 13 200 15 50
-15 14 201 16 51
-16 15 202 17 52
-17 16 203 18 53
-18 17 204 19 54
-19 55 18 205 20
-20 56 19 206 21
-21 22 57 20 207
-22 23 58 21 208
-23 22 209 24 59
-24 23 210 25 60
-25 24 211 26 61
-26 25 212 27 62
-27 26 213 28 63
-28 27 214 29 64
-29 28 215 30 65
-30 66 29 216 31
-31 67 181 30 32
-32 33 68 182 31
-33 34 69 183 32
-34 33 35 70 184
-35 34 36 71 185
-36 1 35 72 186
-37 1 38 72 73
-38 2 37 39 74
-39 3 38 40 75
-40 4 39 41 76
-41 77 5 40 42
-42 78 6 41 43
-43 44 79 7 42
-44 45 80 8 43
-45 44 46 81 9
-46 45 47 82 10
-47 11 46 48 83
-48 12 47 49 84
-49 13 48 50 85
-50 14 49 51 86
-51 15 50 52 87
-52 88 16 51 53
-53 89 17 52 54
-54 55 90 18 53
-55 56 91 19 54
-56 55 57 92 20
-57 56 58 93 21
-58 22 57 59 94
-59 23 58 60 95
-60 24 59 61 96
-61 25 60 62 97
-62 26 61 63 98
-63 99 27 62 64
-64 100 28 63 65
-65 66 101 29 64
-66 67 102 30 65
-67 66 68 103 31
-68 67 69 104 32
-69 33 68 70 105
-70 34 69 71 106
-71 35 70 72 107
-72 36 37 71 108
-73 37 74 108 109
-74 110 38 73 75
-75 111 39 74 76
-76 77 112 40 75
-77 78 113 41 76
-78 77 79 114 42
-79 78 80 115 43
-80 44 79 81 116
-81 45 80 82 117
-82 46 81 83 118
-83 47 82 84 119
-84 48 83 85 120
-85 121 49 84 86
-86 122 50 85 87
-87 88 123 51 86
-88 89 124 52 87
-89 88 90 125 53
-90 89 91 126 54
-91 55 90 92 127
-92 56 91 93 128
-93 57 92 94 129
-94 58 93 95 130
-95 59 94 96 131
-96 132 60 95 97
-97 133 61 96 98
-98 99 134 62 97
-99 100 135 63 98
-100 99 101 136 64
-101 100 102 137 65
-102 66 101 103 138
-103 67 102 104 139
-104 68 103 105 140
-105 69 104 106 141
-106 70 105 107 142
-107 143 71 106 108
-108 144 72 73 107
-109 110 144 145 73
-110 111 146 74 109
-111 110 112 147 75
-112 111 113 148 76
-113 77 112 114 149
-114 78 113 115 150
-115 79 114 116 151
-116 80 115 117 152
-117 81 116 118 153
-118 154 82 117 119
-119 155 83 118 120
-120 121 156 84 119
-121 122 157 85 120
-122 121 123 158 86
-123 122 124 159 87
-124 88 123 125 160
-125 89 124 126 161
-126 90 125 127 162
-127 91 126 128 163
-128 92 127 129 164
-129 165 93 128 130
-130 166 94 129 131
-131 132 167 95 130
-132 133 168 96 131
-133 132 134 169 97
-134 133 135 170 98
-135 99 134 136 171
-136 100 135 137 172
-137 101 136 138 173
-138 102 137 139 174
-139 103 138 140 175
-140 176 104 139 141
-141 177 105 140 142
-142 143 178 106 141
-143 144 179 107 142
-144 143 180 108 109
-145 146 180 181 109
-146 110 145 147 182
-147 111 146 148 183
-148 112 147 149 184
-149 113 148 150 185
-150 114 149 151 186
-151 187 115 150 152
-152 188 116 151 153
-153 154 189 117 152
-154 155 190 118 153
-155 154 156 191 119
-156 155 157 192 120
-157 121 156 158 193
-158 122 157 159 194
-159 123 158 160 195
-160 124 159 161 196
-161 125 160 162 197
-162 198 126 161 163
-163 199 127 162 164
-164 165 200 128 163
-165 166 201 129 164
-166 165 167 202 130
-167 166 168 203 131
-168 132 167 169 204
-169 133 168 170 205
-170 134 169 171 206
-171 135 170 172 207
-172 136 171 173 208
-173 209 137 172 174
-174 210 138 173 175
-175 176 211 139 174
-176 177 212 140 175
-177 176 178 213 141
-178 177 179 214 142
-179 143 178 180 215
-180 144 145 179 216
-181 145 182 216 31
-182 146 181 183 32
-183 33 147 182 184
-184 34 148 183 185
-185 35 149 184 186
-186 187 36 150 185
-187 1 188 151 186
-188 187 2 189 152
-189 188 3 190 153
-190 154 189 4 191
-191 155 190 5 192
-192 156 191 6 193
-193 157 192 7 194
-194 158 193 8 195
-195 159 194 9 196
-196 160 195 10 197
-197 11 198 161 196
-198 12 199 162 197
-199 198 13 200 163
-200 199 14 201 164
-201 165 200 15 202
-202 166 201 16 203
-203 167 202 17 204
-204 168 203 18 205
-205 169 204 19 206
-206 170 205 20 207
-207 171 206 21 208
-208 22 209 172 207
-209 23 210 173 208
-210 209 24 211 174
-211 210 25 212 175
-212 176 211 26 213
-213 177 212 27 214
-214 178 213 28 215
-215 179 214 29 216
-216 180 181 215 30
0