C4graphGraph forms for C4 [ 216, 19 ] = R_108(83,28)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 19 ] = R_108(83,28).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {2, 3}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {1, 2}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {3, 4}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {96, 121}, {98, 123}, {100, 125}, {102, 127}, {97, 122}, {101, 126}, {128, 156}, {163, 191}, {162, 190}, {161, 189}, {160, 188}, {131, 159}, {130, 158}, {129, 157}, {15, 16}, {47, 48}, {79, 80}, {99, 124}, {132, 160}, {159, 187}, {158, 186}, {157, 185}, {156, 184}, {151, 179}, {150, 178}, {149, 177}, {148, 176}, {143, 171}, {142, 170}, {141, 169}, {140, 168}, {135, 163}, {134, 162}, {133, 161}, {87, 112}, {95, 120}, {88, 113}, {90, 115}, {92, 117}, {94, 119}, {89, 114}, {93, 118}, {136, 164}, {155, 183}, {154, 182}, {153, 181}, {152, 180}, {139, 167}, {138, 166}, {137, 165}, {91, 116}, {84, 109}, {86, 111}, {85, 110}, {144, 172}, {147, 175}, {146, 174}, {145, 173}, {31, 32}, {95, 96}, {128, 208}, {136, 216}, {135, 215}, {134, 214}, {133, 213}, {132, 212}, {131, 211}, {130, 210}, {129, 209}, {164, 192}, {188, 216}, {183, 211}, {182, 210}, {181, 209}, {180, 208}, {175, 203}, {174, 202}, {173, 201}, {172, 200}, {167, 195}, {166, 194}, {165, 193}, {1, 109}, {187, 215}, {186, 214}, {185, 213}, {184, 212}, {171, 199}, {170, 198}, {169, 197}, {168, 196}, {2, 110}, {3, 111}, {16, 124}, {17, 125}, {18, 126}, {19, 127}, {1, 108}, {4, 112}, {5, 113}, {6, 114}, {7, 115}, {12, 120}, {13, 121}, {14, 122}, {15, 123}, {8, 116}, {179, 207}, {178, 206}, {177, 205}, {176, 204}, {9, 117}, {10, 118}, {11, 119}, {63, 64}, {2, 135}, {66, 199}, {64, 197}, {58, 191}, {56, 189}, {50, 183}, {48, 181}, {42, 175}, {8, 141}, {10, 143}, {16, 149}, {18, 151}, {24, 157}, {26, 159}, {32, 165}, {34, 167}, {40, 173}, {72, 205}, {74, 207}, {80, 213}, {82, 215}, {1, 134}, {65, 198}, {57, 190}, {49, 182}, {9, 142}, {17, 150}, {25, 158}, {33, 166}, {41, 174}, {73, 206}, {81, 214}, {3, 136}, {67, 200}, {55, 188}, {51, 184}, {7, 140}, {19, 152}, {23, 156}, {35, 168}, {39, 172}, {71, 204}, {83, 216}, {4, 137}, {68, 201}, {54, 187}, {52, 185}, {6, 139}, {20, 153}, {22, 155}, {36, 169}, {38, 171}, {70, 203}, {5, 138}, {53, 186}, {21, 154}, {37, 170}, {69, 202}, {20, 128}, {63, 171}, {62, 170}, {61, 169}, {60, 168}, {55, 163}, {54, 162}, {53, 161}, {52, 160}, {21, 129}, {22, 130}, {23, 131}, {28, 136}, {29, 137}, {30, 138}, {31, 139}, {84, 192}, {85, 193}, {86, 194}, {87, 195}, {92, 200}, {93, 201}, {94, 202}, {95, 203}, {11, 144}, {47, 180}, {43, 176}, {15, 148}, {75, 208}, {79, 212}, {24, 132}, {59, 167}, {58, 166}, {57, 165}, {56, 164}, {25, 133}, {26, 134}, {27, 135}, {88, 196}, {89, 197}, {90, 198}, {91, 199}, {12, 145}, {46, 179}, {44, 177}, {14, 147}, {76, 209}, {78, 211}, {13, 146}, {45, 178}, {77, 210}, {32, 140}, {51, 159}, {50, 158}, {49, 157}, {48, 156}, {33, 141}, {34, 142}, {35, 143}, {96, 204}, {97, 205}, {98, 206}, {99, 207}, {112, 192}, {127, 207}, {126, 206}, {125, 205}, {113, 193}, {114, 194}, {115, 195}, {116, 196}, {117, 197}, {118, 198}, {119, 199}, {120, 200}, {121, 201}, {122, 202}, {123, 203}, {124, 204}, {36, 144}, {47, 155}, {46, 154}, {45, 153}, {44, 152}, {37, 145}, {38, 146}, {39, 147}, {100, 208}, {101, 209}, {102, 210}, {103, 211}, {108, 216}, {27, 160}, {31, 164}, {40, 148}, {43, 151}, {42, 150}, {41, 149}, {104, 212}, {105, 213}, {106, 214}, {107, 215}, {28, 161}, {30, 163}, {29, 162}, {109, 189}, {110, 190}, {111, 191}, {109, 137}, {127, 155}, {126, 154}, {125, 153}, {110, 138}, {111, 139}, {116, 144}, {117, 145}, {118, 146}, {119, 147}, {124, 152}, {103, 128}, {104, 129}, {106, 131}, {108, 133}, {105, 130}, {64, 172}, {67, 175}, {66, 174}, {65, 173}, {80, 188}, {81, 189}, {82, 190}, {83, 191}, {120, 148}, {121, 149}, {122, 150}, {123, 151}, {107, 132}, {68, 176}, {69, 177}, {70, 178}, {71, 179}, {76, 184}, {77, 185}, {78, 186}, {79, 187}, {59, 192}, {63, 196}, {72, 180}, {73, 181}, {74, 182}, {75, 183}, {112, 140}, {113, 141}, {114, 142}, {115, 143}, {60, 193}, {62, 195}, {61, 194} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 108)(3, 107)(4, 106)(5, 105)(6, 104)(7, 103)(8, 102)(9, 101)(10, 100)(11, 99)(12, 98)(13, 97)(14, 96)(15, 95)(16, 94)(17, 93)(18, 92)(19, 91)(20, 90)(21, 89)(22, 88)(23, 87)(24, 86)(25, 85)(26, 84)(27, 83)(28, 82)(29, 81)(30, 80)(31, 79)(32, 78)(33, 77)(34, 76)(35, 75)(36, 74)(37, 73)(38, 72)(39, 71)(40, 70)(41, 69)(42, 68)(43, 67)(44, 66)(45, 65)(46, 64)(47, 63)(48, 62)(49, 61)(50, 60)(51, 59)(52, 58)(53, 57)(54, 56)(109, 134)(110, 133)(111, 132)(112, 131)(113, 130)(114, 129)(115, 128)(116, 127)(117, 126)(118, 125)(119, 124)(120, 123)(121, 122)(135, 216)(136, 215)(137, 214)(138, 213)(139, 212)(140, 211)(141, 210)(142, 209)(143, 208)(144, 207)(145, 206)(146, 205)(147, 204)(148, 203)(149, 202)(150, 201)(151, 200)(152, 199)(153, 198)(154, 197)(155, 196)(156, 195)(157, 194)(158, 193)(159, 192)(160, 191)(161, 190)(162, 189)(163, 188)(164, 187)(165, 186)(166, 185)(167, 184)(168, 183)(169, 182)(170, 181)(171, 180)(172, 179)(173, 178)(174, 177)(175, 176)
b: (2, 109)(3, 137)(5, 112)(6, 140)(8, 115)(9, 143)(11, 118)(12, 146)(14, 121)(15, 149)(17, 124)(18, 152)(20, 127)(21, 155)(23, 130)(24, 158)(26, 133)(27, 161)(29, 136)(30, 164)(32, 139)(33, 167)(35, 142)(36, 170)(38, 145)(39, 173)(41, 148)(42, 176)(44, 151)(45, 179)(47, 154)(48, 182)(50, 157)(51, 185)(53, 160)(54, 188)(56, 163)(57, 191)(59, 166)(60, 194)(62, 169)(63, 197)(65, 172)(66, 200)(68, 175)(69, 203)(71, 178)(72, 206)(74, 181)(75, 209)(77, 184)(78, 212)(80, 187)(81, 215)(83, 190)(84, 110)(86, 193)(87, 113)(89, 196)(90, 116)(92, 199)(93, 119)(95, 202)(96, 122)(98, 205)(99, 125)(101, 208)(102, 128)(104, 211)(105, 131)(107, 214)(108, 134)(111, 165)(114, 168)(117, 171)(120, 174)(123, 177)(126, 180)(129, 183)(132, 186)(135, 189)(138, 192)(141, 195)(144, 198)(147, 201)(150, 204)(153, 207)(156, 210)(159, 213)(162, 216)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108)(109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 19 ]
216
-1 2 134 108 109
-2 110 1 3 135
-3 111 2 4 136
-4 112 3 5 137
-5 113 4 6 138
-6 114 5 7 139
-7 115 6 8 140
-8 116 7 9 141
-9 117 8 10 142
-10 11 143 118 9
-11 12 144 119 10
-12 11 13 145 120
-13 121 12 14 146
-14 122 13 15 147
-15 123 14 16 148
-16 124 15 17 149
-17 125 16 18 150
-18 126 17 19 151
-19 127 18 20 152
-20 128 19 21 153
-21 22 154 129 20
-22 23 155 130 21
-23 22 24 156 131
-24 132 23 25 157
-25 133 24 26 158
-26 134 25 27 159
-27 135 26 28 160
-28 136 27 29 161
-29 137 28 30 162
-30 138 29 31 163
-31 139 30 32 164
-32 33 165 140 31
-33 34 166 141 32
-34 33 35 167 142
-35 143 34 36 168
-36 144 35 37 169
-37 145 36 38 170
-38 146 37 39 171
-39 147 38 40 172
-40 148 39 41 173
-41 149 40 42 174
-42 150 41 43 175
-43 44 176 151 42
-44 45 177 152 43
-45 44 46 178 153
-46 154 45 47 179
-47 155 46 48 180
-48 156 47 49 181
-49 157 48 50 182
-50 158 49 51 183
-51 159 50 52 184
-52 160 51 53 185
-53 161 52 54 186
-54 55 187 162 53
-55 56 188 163 54
-56 55 57 189 164
-57 165 56 58 190
-58 166 57 59 191
-59 167 58 60 192
-60 168 59 61 193
-61 169 60 62 194
-62 170 61 63 195
-63 171 62 64 196
-64 172 63 65 197
-65 66 198 173 64
-66 67 199 174 65
-67 66 68 200 175
-68 176 67 69 201
-69 177 68 70 202
-70 178 69 71 203
-71 179 70 72 204
-72 180 71 73 205
-73 181 72 74 206
-74 182 73 75 207
-75 183 74 76 208
-76 77 209 184 75
-77 78 210 185 76
-78 77 79 211 186
-79 187 78 80 212
-80 188 79 81 213
-81 189 80 82 214
-82 190 81 83 215
-83 191 82 84 216
-84 192 83 85 109
-85 110 193 84 86
-86 111 194 85 87
-87 88 112 195 86
-88 89 113 196 87
-89 88 90 114 197
-90 198 89 91 115
-91 199 90 92 116
-92 200 91 93 117
-93 201 92 94 118
-94 202 93 95 119
-95 203 94 96 120
-96 121 204 95 97
-97 122 205 96 98
-98 99 123 206 97
-99 100 124 207 98
-100 99 101 125 208
-101 209 100 102 126
-102 210 101 103 127
-103 211 102 104 128
-104 212 103 105 129
-105 213 104 106 130
-106 214 105 107 131
-107 132 215 106 108
-108 1 133 216 107
-109 1 189 137 84
-110 2 190 138 85
-111 3 191 139 86
-112 4 192 140 87
-113 88 5 193 141
-114 89 6 194 142
-115 143 90 7 195
-116 144 91 8 196
-117 145 92 9 197
-118 198 146 93 10
-119 11 199 147 94
-120 12 200 148 95
-121 13 201 149 96
-122 14 202 150 97
-123 15 203 151 98
-124 99 16 204 152
-125 100 17 205 153
-126 154 101 18 206
-127 155 102 19 207
-128 156 103 20 208
-129 209 157 104 21
-130 22 210 158 105
-131 23 211 159 106
-132 24 212 160 107
-133 25 213 161 108
-134 1 26 214 162
-135 2 27 215 163
-136 3 28 216 164
-137 165 4 29 109
-138 110 166 5 30
-139 111 167 6 31
-140 112 168 7 32
-141 33 113 169 8
-142 34 114 170 9
-143 35 115 171 10
-144 11 36 116 172
-145 12 37 117 173
-146 13 38 118 174
-147 14 39 119 175
-148 176 15 40 120
-149 121 177 16 41
-150 122 178 17 42
-151 123 179 18 43
-152 44 124 180 19
-153 45 125 181 20
-154 46 126 182 21
-155 22 47 127 183
-156 23 48 128 184
-157 24 49 129 185
-158 25 50 130 186
-159 187 26 51 131
-160 132 188 27 52
-161 133 189 28 53
-162 134 190 29 54
-163 55 135 191 30
-164 56 136 192 31
-165 57 137 193 32
-166 33 58 138 194
-167 34 59 139 195
-168 35 60 140 196
-169 36 61 141 197
-170 198 37 62 142
-171 143 199 38 63
-172 144 200 39 64
-173 145 201 40 65
-174 66 146 202 41
-175 67 147 203 42
-176 68 148 204 43
-177 44 69 149 205
-178 45 70 150 206
-179 46 71 151 207
-180 47 72 152 208
-181 209 48 73 153
-182 154 210 49 74
-183 155 211 50 75
-184 156 212 51 76
-185 77 157 213 52
-186 78 158 214 53
-187 79 159 215 54
-188 55 80 160 216
-189 56 81 161 109
-190 110 57 82 162
-191 111 58 83 163
-192 112 59 84 164
-193 165 113 60 85
-194 166 114 61 86
-195 167 115 62 87
-196 88 168 116 63
-197 89 169 117 64
-198 90 170 118 65
-199 66 91 171 119
-200 67 92 172 120
-201 121 68 93 173
-202 122 69 94 174
-203 123 70 95 175
-204 176 124 71 96
-205 177 125 72 97
-206 178 126 73 98
-207 99 179 127 74
-208 100 180 128 75
-209 101 181 129 76
-210 77 102 182 130
-211 78 103 183 131
-212 132 79 104 184
-213 133 80 105 185
-214 134 81 106 186
-215 187 135 82 107
-216 188 136 83 108
0

**************