C4graphGraph forms for C4 [ 216, 20 ] = R_108(29,82)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 20 ] = R_108(29,82).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {2, 3}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {1, 2}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {3, 4}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {128, 154}, {165, 191}, {164, 190}, {161, 187}, {160, 186}, {133, 159}, {132, 158}, {129, 155}, {130, 156}, {163, 189}, {162, 188}, {131, 157}, {15, 16}, {47, 48}, {79, 80}, {134, 160}, {159, 185}, {158, 184}, {151, 177}, {150, 176}, {143, 169}, {142, 168}, {135, 161}, {136, 162}, {157, 183}, {156, 182}, {153, 179}, {152, 178}, {141, 167}, {140, 166}, {137, 163}, {138, 164}, {155, 181}, {154, 180}, {139, 165}, {144, 170}, {149, 175}, {148, 174}, {145, 171}, {146, 172}, {147, 173}, {31, 32}, {95, 96}, {32, 111}, {48, 127}, {33, 112}, {47, 126}, {45, 124}, {35, 114}, {37, 116}, {39, 118}, {41, 120}, {43, 122}, {128, 210}, {133, 215}, {132, 214}, {129, 211}, {34, 113}, {46, 125}, {38, 117}, {42, 121}, {130, 212}, {131, 213}, {36, 115}, {44, 123}, {134, 216}, {40, 119}, {166, 192}, {190, 216}, {183, 209}, {182, 208}, {175, 201}, {174, 200}, {167, 193}, {168, 194}, {189, 215}, {188, 214}, {185, 211}, {184, 210}, {173, 199}, {172, 198}, {169, 195}, {1, 109}, {2, 110}, {3, 111}, {16, 124}, {17, 125}, {18, 126}, {19, 127}, {1, 108}, {170, 196}, {187, 213}, {186, 212}, {171, 197}, {31, 110}, {30, 109}, {4, 112}, {5, 113}, {6, 114}, {7, 115}, {12, 120}, {13, 121}, {14, 122}, {15, 123}, {176, 202}, {181, 207}, {180, 206}, {177, 203}, {8, 116}, {9, 117}, {10, 118}, {11, 119}, {178, 204}, {179, 205}, {63, 64}, {20, 128}, {63, 171}, {62, 170}, {61, 169}, {60, 168}, {55, 163}, {54, 162}, {53, 161}, {52, 160}, {21, 129}, {22, 130}, {23, 131}, {28, 136}, {29, 137}, {30, 138}, {31, 139}, {84, 192}, {85, 193}, {86, 194}, {87, 195}, {92, 200}, {93, 201}, {94, 202}, {95, 203}, {24, 132}, {59, 167}, {58, 166}, {57, 165}, {56, 164}, {25, 133}, {26, 134}, {27, 135}, {88, 196}, {89, 197}, {90, 198}, {91, 199}, {32, 140}, {51, 159}, {50, 158}, {49, 157}, {48, 156}, {33, 141}, {34, 142}, {35, 143}, {96, 204}, {97, 205}, {98, 206}, {99, 207}, {110, 192}, {111, 193}, {126, 208}, {127, 209}, {49, 128}, {63, 142}, {61, 140}, {59, 138}, {57, 136}, {55, 134}, {53, 132}, {51, 130}, {112, 194}, {113, 195}, {116, 198}, {117, 199}, {120, 202}, {121, 203}, {124, 206}, {125, 207}, {50, 129}, {62, 141}, {58, 137}, {54, 133}, {36, 144}, {47, 155}, {46, 154}, {45, 153}, {44, 152}, {37, 145}, {38, 146}, {39, 147}, {100, 208}, {101, 209}, {102, 210}, {103, 211}, {108, 216}, {114, 196}, {115, 197}, {122, 204}, {123, 205}, {52, 131}, {60, 139}, {4, 191}, {40, 148}, {41, 149}, {42, 150}, {43, 151}, {104, 212}, {105, 213}, {106, 214}, {107, 215}, {1, 188}, {3, 190}, {118, 200}, {119, 201}, {2, 189}, {56, 135}, {5, 192}, {7, 194}, {13, 200}, {15, 202}, {21, 208}, {23, 210}, {29, 216}, {6, 193}, {14, 201}, {22, 209}, {8, 195}, {12, 199}, {24, 211}, {28, 215}, {9, 196}, {11, 198}, {25, 212}, {27, 214}, {10, 197}, {64, 143}, {26, 213}, {80, 159}, {96, 175}, {65, 144}, {71, 150}, {69, 148}, {67, 146}, {73, 152}, {75, 154}, {77, 156}, {79, 158}, {97, 176}, {99, 178}, {101, 180}, {103, 182}, {105, 184}, {107, 186}, {109, 191}, {66, 145}, {70, 149}, {74, 153}, {78, 157}, {98, 177}, {102, 181}, {106, 185}, {68, 147}, {76, 155}, {100, 179}, {108, 187}, {16, 203}, {20, 207}, {17, 204}, {19, 206}, {18, 205}, {72, 151}, {104, 183}, {110, 136}, {111, 137}, {118, 144}, {119, 145}, {126, 152}, {127, 153}, {109, 135}, {120, 146}, {121, 147}, {124, 150}, {125, 151}, {64, 172}, {67, 175}, {66, 174}, {65, 173}, {80, 188}, {81, 189}, {82, 190}, {83, 191}, {122, 148}, {123, 149}, {81, 160}, {83, 162}, {85, 164}, {87, 166}, {89, 168}, {91, 170}, {93, 172}, {95, 174}, {82, 161}, {86, 165}, {90, 169}, {94, 173}, {68, 176}, {71, 179}, {70, 178}, {69, 177}, {76, 184}, {77, 185}, {78, 186}, {79, 187}, {84, 163}, {92, 171}, {112, 138}, {113, 139}, {116, 142}, {117, 143}, {72, 180}, {73, 181}, {74, 182}, {75, 183}, {114, 140}, {115, 141}, {88, 167} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 109)(3, 191)(5, 112)(6, 194)(8, 115)(9, 197)(11, 118)(12, 200)(14, 121)(15, 203)(17, 124)(18, 206)(20, 127)(21, 209)(23, 130)(24, 212)(26, 133)(27, 215)(29, 136)(30, 110)(32, 139)(33, 113)(35, 142)(36, 116)(38, 145)(39, 119)(41, 148)(42, 122)(44, 151)(45, 125)(47, 154)(48, 128)(50, 157)(51, 131)(53, 160)(54, 134)(56, 163)(57, 137)(59, 166)(60, 140)(62, 169)(63, 143)(65, 172)(66, 146)(68, 175)(69, 149)(71, 178)(72, 152)(74, 181)(75, 155)(77, 184)(78, 158)(80, 187)(81, 161)(83, 190)(84, 164)(86, 193)(87, 167)(89, 196)(90, 170)(92, 199)(93, 173)(95, 202)(96, 176)(98, 205)(99, 179)(101, 208)(102, 182)(104, 211)(105, 185)(107, 214)(108, 188)(111, 165)(114, 168)(117, 171)(120, 174)(123, 177)(126, 180)(129, 183)(132, 186)(135, 189)(138, 192)(141, 195)(144, 198)(147, 201)(150, 204)(153, 207)(156, 210)(159, 213)(162, 216)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108)(109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216)
c: (2, 108)(3, 107)(4, 106)(5, 105)(6, 104)(7, 103)(8, 102)(9, 101)(10, 100)(11, 99)(12, 98)(13, 97)(14, 96)(15, 95)(16, 94)(17, 93)(18, 92)(19, 91)(20, 90)(21, 89)(22, 88)(23, 87)(24, 86)(25, 85)(26, 84)(27, 83)(28, 82)(29, 81)(30, 80)(31, 79)(32, 78)(33, 77)(34, 76)(35, 75)(36, 74)(37, 73)(38, 72)(39, 71)(40, 70)(41, 69)(42, 68)(43, 67)(44, 66)(45, 65)(46, 64)(47, 63)(48, 62)(49, 61)(50, 60)(51, 59)(52, 58)(53, 57)(54, 56)(109, 188)(110, 187)(111, 186)(112, 185)(113, 184)(114, 183)(115, 182)(116, 181)(117, 180)(118, 179)(119, 178)(120, 177)(121, 176)(122, 175)(123, 174)(124, 173)(125, 172)(126, 171)(127, 170)(128, 169)(129, 168)(130, 167)(131, 166)(132, 165)(133, 164)(134, 163)(135, 162)(136, 161)(137, 160)(138, 159)(139, 158)(140, 157)(141, 156)(142, 155)(143, 154)(144, 153)(145, 152)(146, 151)(147, 150)(148, 149)(189, 216)(190, 215)(191, 214)(192, 213)(193, 212)(194, 211)(195, 210)(196, 209)(197, 208)(198, 207)(199, 206)(200, 205)(201, 204)(202, 203)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 20 ]
216
-1 188 2 108 109
-2 110 1 189 3
-3 111 2 190 4
-4 112 3 191 5
-5 113 4 192 6
-6 114 5 193 7
-7 115 6 194 8
-8 116 7 195 9
-9 117 8 196 10
-10 11 118 9 197
-11 198 12 119 10
-12 11 199 13 120
-13 121 12 200 14
-14 122 13 201 15
-15 123 14 202 16
-16 124 15 203 17
-17 125 16 204 18
-18 126 17 205 19
-19 127 18 206 20
-20 128 19 207 21
-21 22 129 20 208
-22 209 23 130 21
-23 22 210 24 131
-24 132 23 211 25
-25 133 24 212 26
-26 134 25 213 27
-27 135 26 214 28
-28 136 27 215 29
-29 137 28 216 30
-30 138 29 31 109
-31 110 139 30 32
-32 33 111 140 31
-33 34 112 141 32
-34 33 35 113 142
-35 143 34 36 114
-36 144 35 37 115
-37 145 36 38 116
-38 146 37 39 117
-39 147 38 40 118
-40 148 39 41 119
-41 149 40 42 120
-42 121 150 41 43
-43 44 122 151 42
-44 45 123 152 43
-45 44 46 124 153
-46 154 45 47 125
-47 155 46 48 126
-48 156 47 49 127
-49 157 48 50 128
-50 158 49 51 129
-51 159 50 52 130
-52 160 51 53 131
-53 132 161 52 54
-54 55 133 162 53
-55 56 134 163 54
-56 55 57 135 164
-57 165 56 58 136
-58 166 57 59 137
-59 167 58 60 138
-60 168 59 61 139
-61 169 60 62 140
-62 170 61 63 141
-63 171 62 64 142
-64 143 172 63 65
-65 66 144 173 64
-66 67 145 174 65
-67 66 68 146 175
-68 176 67 69 147
-69 177 68 70 148
-70 178 69 71 149
-71 179 70 72 150
-72 180 71 73 151
-73 181 72 74 152
-74 182 73 75 153
-75 154 183 74 76
-76 77 155 184 75
-77 78 156 185 76
-78 77 79 157 186
-79 187 78 80 158
-80 188 79 81 159
-81 189 80 82 160
-82 190 81 83 161
-83 191 82 84 162
-84 192 83 85 163
-85 193 84 86 164
-86 165 194 85 87
-87 88 166 195 86
-88 89 167 196 87
-89 88 90 168 197
-90 198 89 91 169
-91 199 90 92 170
-92 200 91 93 171
-93 201 92 94 172
-94 202 93 95 173
-95 203 94 96 174
-96 204 95 97 175
-97 176 205 96 98
-98 99 177 206 97
-99 100 178 207 98
-100 99 101 179 208
-101 209 100 102 180
-102 210 101 103 181
-103 211 102 104 182
-104 212 103 105 183
-105 213 104 106 184
-106 214 105 107 185
-107 215 106 108 186
-108 187 1 216 107
-109 1 135 191 30
-110 2 136 192 31
-111 3 137 193 32
-112 33 4 138 194
-113 34 5 139 195
-114 35 6 140 196
-115 36 7 141 197
-116 198 37 8 142
-117 143 199 38 9
-118 144 200 39 10
-119 11 145 201 40
-120 12 146 202 41
-121 13 147 203 42
-122 14 148 204 43
-123 44 15 149 205
-124 45 16 150 206
-125 46 17 151 207
-126 47 18 152 208
-127 209 48 19 153
-128 154 210 49 20
-129 155 211 50 21
-130 22 156 212 51
-131 23 157 213 52
-132 24 158 214 53
-133 25 159 215 54
-134 55 26 160 216
-135 56 27 161 109
-136 110 57 28 162
-137 111 58 29 163
-138 112 59 30 164
-139 165 113 60 31
-140 166 114 61 32
-141 33 167 115 62
-142 34 168 116 63
-143 35 169 117 64
-144 36 170 118 65
-145 66 37 171 119
-146 67 38 172 120
-147 121 68 39 173
-148 122 69 40 174
-149 123 70 41 175
-150 176 124 71 42
-151 177 125 72 43
-152 44 178 126 73
-153 45 179 127 74
-154 46 180 128 75
-155 47 181 129 76
-156 77 48 182 130
-157 78 49 183 131
-158 132 79 50 184
-159 133 80 51 185
-160 134 81 52 186
-161 187 135 82 53
-162 188 136 83 54
-163 55 189 137 84
-164 56 190 138 85
-165 57 191 139 86
-166 58 192 140 87
-167 88 59 193 141
-168 89 60 194 142
-169 143 90 61 195
-170 144 91 62 196
-171 145 92 63 197
-172 198 146 93 64
-173 199 147 94 65
-174 66 200 148 95
-175 67 201 149 96
-176 68 202 150 97
-177 69 203 151 98
-178 99 70 204 152
-179 100 71 205 153
-180 154 101 72 206
-181 155 102 73 207
-182 156 103 74 208
-183 209 157 104 75
-184 210 158 105 76
-185 77 211 159 106
-186 78 212 160 107
-187 79 213 161 108
-188 1 80 214 162
-189 2 81 215 163
-190 3 82 216 164
-191 165 4 83 109
-192 110 166 5 84
-193 111 167 6 85
-194 112 168 7 86
-195 113 169 8 87
-196 88 114 170 9
-197 89 115 171 10
-198 11 90 116 172
-199 12 91 117 173
-200 13 92 118 174
-201 14 93 119 175
-202 176 15 94 120
-203 121 177 16 95
-204 122 178 17 96
-205 123 179 18 97
-206 124 180 19 98
-207 99 125 181 20
-208 100 126 182 21
-209 22 101 127 183
-210 23 102 128 184
-211 24 103 129 185
-212 25 104 130 186
-213 187 26 105 131
-214 132 188 27 106
-215 133 189 28 107
-216 134 190 29 108
0

**************