C4graphGraph forms for C4 [ 216, 24 ] = PL(WH_36(2,0,7,11),[3^36,18^6])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 24 ] = PL(WH_36(2,0,7,11),[3^36,18^6]).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {103, 110}, {104, 125}, {98, 116}, {98, 117}, {101, 125}, {83, 112}, {80, 117}, {88, 112}, {93, 116}, {91, 113}, {85, 126}, {88, 117}, {72, 126}, {70, 113}, {79, 120}, {78, 117}, {81, 110}, {61, 125}, {58, 123}, {61, 124}, {53, 113}, {57, 127}, {59, 125}, {52, 115}, {63, 120}, {55, 127}, {59, 115}, {38, 111}, {60, 118}, {58, 113}, {54, 123}, {62, 112}, {43, 123}, {44, 124}, {33, 114}, {40, 123}, {42, 127}, {34, 116}, {42, 115}, {35, 121}, {50, 110}, {37, 122}, {41, 118}, {15, 111}, {16, 112}, {19, 114}, {29, 124}, {12, 110}, {25, 122}, {26, 126}, {9, 111}, {24, 126}, {17, 119}, {20, 115}, {31, 120}, {21, 114}, {23, 127}, {4, 109}, {28, 118}, {30, 116}, {6, 109}, {1, 109}, {31, 114}, {18, 124}, {23, 121}, {2, 109}, {5, 119}, {8, 122}, {3, 119}, {14, 122}, {12, 121}, {26, 111}, {14, 120}, {1, 118}, {11, 119}, {7, 121}, {43, 171}, {45, 173}, {13, 140}, {28, 157}, {16, 145}, {72, 201}, {8, 138}, {43, 169}, {41, 171}, {79, 205}, {21, 150}, {78, 205}, {5, 129}, {36, 160}, {30, 155}, {74, 207}, {79, 202}, {48, 182}, {86, 208}, {57, 191}, {60, 186}, {69, 195}, {70, 192}, {65, 198}, {52, 188}, {88, 208}, {76, 196}, {18, 155}, {49, 184}, {29, 148}, {10, 128}, {37, 175}, {32, 170}, {28, 150}, {7, 140}, {51, 184}, {57, 178}, {59, 176}, {33, 173}, {55, 187}, {49, 189}, {38, 170}, {51, 190}, {38, 168}, {47, 161}, {42, 164}, {76, 194}, {13, 130}, {27, 148}, {1, 145}, {84, 196}, {8, 153}, {40, 185}, {58, 171}, {69, 215}, {82, 192}, {2, 145}, {89, 202}, {56, 171}, {47, 188}, {36, 183}, {35, 176}, {62, 173}, {70, 213}, {71, 210}, {88, 205}, {14, 152}, {86, 192}, {52, 162}, {29, 139}, {67, 213}, {1, 150}, {14, 153}, {8, 159}, {2, 154}, {49, 169}, {42, 178}, {3, 155}, {5, 156}, {93, 196}, {25, 128}, {19, 138}, {63, 166}, {22, 140}, {90, 192}, {87, 205}, {28, 134}, {10, 145}, {12, 151}, {60, 167}, {73, 210}, {50, 174}, {89, 196}, {5, 155}, {45, 179}, {44, 178}, {74, 212}, {32, 191}, {92, 195}, {39, 184}, {58, 165}, {59, 164}, {72, 215}, {32, 129}, {51, 146}, {33, 131}, {107, 201}, {6, 165}, {48, 147}, {46, 138}, {57, 156}, {7, 161}, {43, 141}, {17, 183}, {3, 164}, {46, 137}, {11, 172}, {7, 160}, {63, 152}, {9, 161}, {106, 195}, {19, 185}, {48, 154}, {47, 133}, {39, 141}, {30, 180}, {15, 163}, {53, 153}, {4, 169}, {13, 160}, {12, 161}, {13, 163}, {103, 201}, {54, 152}, {34, 140}, {26, 170}, {46, 159}, {63, 142}, {99, 209}, {102, 212}, {29, 174}, {15, 187}, {36, 144}, {55, 130}, {26, 172}, {98, 212}, {38, 144}, {40, 159}, {49, 134}, {21, 173}, {24, 160}, {22, 174}, {10, 179}, {104, 209}, {17, 168}, {33, 154}, {56, 131}, {4, 184}, {46, 146}, {18, 174}, {20, 170}, {51, 141}, {39, 153}, {16, 175}, {27, 164}, {2, 194}, {19, 211}, {77, 141}, {83, 147}, {89, 152}, {9, 203}, {100, 166}, {96, 162}, {20, 214}, {77, 143}, {11, 200}, {95, 156}, {93, 158}, {66, 129}, {67, 135}, {68, 128}, {75, 143}, {91, 158}, {3, 197}, {10, 204}, {66, 132}, {81, 151}, {71, 128}, {87, 144}, {4, 204}, {92, 148}, {64, 136}, {65, 136}, {92, 149}, {6, 204}, {64, 138}, {80, 154}, {25, 210}, {31, 211}, {100, 168}, {78, 130}, {94, 147}, {69, 139}, {108, 162}, {105, 167}, {71, 137}, {24, 215}, {76, 131}, {84, 132}, {108, 188}, {102, 182}, {85, 133}, {20, 197}, {76, 158}, {102, 180}, {6, 213}, {105, 186}, {99, 176}, {98, 177}, {21, 198}, {80, 131}, {75, 159}, {83, 135}, {31, 202}, {105, 188}, {101, 176}, {64, 149}, {30, 200}, {107, 189}, {22, 193}, {106, 189}, {65, 150}, {22, 206}, {95, 135}, {86, 142}, {27, 195}, {23, 207}, {15, 214}, {108, 181}, {103, 190}, {99, 186}, {94, 135}, {24, 193}, {17, 200}, {68, 157}, {18, 200}, {90, 129}, {11, 215}, {94, 130}, {23, 203}, {16, 204}, {66, 158}, {73, 149}, {82, 142}, {89, 132}, {25, 199}, {27, 197}, {66, 156}, {81, 143}, {9, 214}, {97, 190}, {91, 132}, {72, 151}, {39, 199}, {95, 191}, {87, 183}, {53, 213}, {56, 216}, {70, 166}, {80, 177}, {106, 139}, {104, 137}, {37, 199}, {44, 206}, {34, 193}, {84, 183}, {44, 207}, {47, 203}, {108, 136}, {77, 169}, {36, 193}, {96, 133}, {94, 187}, {90, 191}, {67, 165}, {96, 134}, {87, 177}, {35, 203}, {97, 137}, {69, 172}, {95, 182}, {93, 180}, {92, 181}, {82, 187}, {77, 167}, {100, 142}, {97, 139}, {61, 209}, {105, 133}, {99, 143}, {62, 211}, {107, 134}, {101, 136}, {78, 163}, {54, 216}, {62, 208}, {41, 198}, {40, 216}, {101, 149}, {41, 216}, {52, 197}, {75, 186}, {82, 163}, {35, 209}, {53, 199}, {48, 194}, {75, 185}, {61, 206}, {65, 181}, {100, 144}, {37, 208}, {103, 146}, {102, 147}, {97, 148}, {67, 182}, {32, 214}, {34, 212}, {81, 167}, {68, 179}, {106, 157}, {85, 162}, {55, 207}, {74, 178}, {64, 185}, {86, 175}, {85, 172}, {68, 189}, {71, 190}, {56, 194}, {104, 146}, {60, 198}, {73, 179}, {50, 201}, {50, 206}, {107, 151}, {90, 166}, {84, 168}, {54, 202}, {73, 181}, {83, 175}, {96, 157}, {45, 211}, {91, 165}, {74, 180}, {79, 177}, {45, 210} }>;

(II) A more general form is to represent the graph as the orbit of {103, 110} under the group generated by the following permutations:

a: (1, 3, 2, 27, 48, 92, 102, 73, 74, 45, 44, 62, 61, 88, 104, 78, 46, 13, 8, 7, 14, 12, 63, 81, 100, 77, 38, 43, 26, 58, 85, 91, 96, 66, 28, 5)(4, 20, 56, 69, 67, 108, 93, 68, 57, 21, 18, 16, 59, 80, 97, 94, 64, 34, 25, 23, 31, 50, 86, 99, 87, 51, 15, 40, 24, 53, 47, 89, 107, 90, 60, 17)(6, 52, 76, 106, 95, 65, 30, 10, 42, 33, 29, 83, 101, 98, 71, 55, 19, 22, 37, 35, 79, 103, 82, 75, 36, 39, 9, 54, 72, 70, 105, 84, 49, 32, 41, 11)(109, 197, 194, 195, 182, 181, 180, 179, 178, 173, 124, 112, 125, 117, 137, 130, 138, 140, 122, 121, 120, 110, 142, 143, 144, 141, 111, 123, 126, 113, 133, 132, 134, 129, 118, 119)(114, 174, 175, 176, 177, 190, 187, 185, 193, 199, 203, 202, 201, 192, 186, 183, 184, 214, 216, 215, 213, 188, 196, 189, 191, 198, 200, 204, 115, 131, 139, 135, 136, 116, 128, 127)(145, 164, 154, 148, 147, 149, 212, 210, 207, 211, 206, 208, 209, 205, 146, 163, 159, 160, 153, 161, 152, 151, 166, 167, 168, 169, 170, 171, 172, 165, 162, 158, 157, 156, 150, 155)
b: (2, 28)(3, 5)(4, 21)(6, 65)(7, 13)(9, 55)(10, 41)(11, 30)(12, 78)(14, 46)(15, 23)(16, 60)(17, 18)(19, 39)(20, 57)(22, 36)(24, 34)(25, 40)(26, 74)(27, 66)(29, 84)(31, 51)(32, 42)(33, 49)(35, 82)(37, 75)(38, 44)(43, 45)(47, 94)(48, 96)(50, 87)(52, 95)(53, 64)(54, 71)(56, 68)(58, 73)(59, 90)(61, 100)(62, 77)(63, 104)(67, 108)(69, 93)(70, 101)(72, 98)(76, 106)(79, 103)(80, 107)(81, 88)(83, 105)(85, 102)(86, 99)(89, 97)(91, 92)(109, 150)(110, 205)(111, 207)(112, 167)(113, 149)(114, 184)(115, 191)(116, 215)(117, 151)(118, 145)(119, 155)(120, 146)(121, 163)(122, 159)(123, 210)(124, 168)(125, 166)(126, 212)(127, 214)(128, 216)(129, 164)(130, 161)(131, 189)(132, 148)(133, 147)(134, 154)(135, 188)(136, 213)(137, 152)(138, 153)(139, 196)(140, 160)(141, 211)(142, 209)(143, 208)(144, 206)(156, 197)(157, 194)(158, 195)(162, 182)(165, 181)(169, 173)(170, 178)(171, 179)(172, 180)(174, 183)(175, 186)(176, 192)(177, 201)(185, 199)(187, 203)(190, 202)(198, 204)
c: (1, 4, 39, 8, 19, 21)(2, 49, 53, 46, 31, 65)(3, 30, 11, 5, 18, 17)(6, 51, 14, 64, 33, 28)(7, 15, 23, 13, 9, 55)(10, 43, 25, 40, 45, 41)(12, 82, 35, 78, 47, 94)(16, 77, 37, 75, 62, 60)(20, 74, 24, 32, 44, 36)(22, 38, 42, 34, 26, 57)(27, 93, 69, 66, 29, 84)(48, 107, 70, 104, 79, 108)(50, 100, 59, 98, 85, 95)(52, 102, 72, 90, 61, 87)(54, 73, 56, 68, 58, 71)(63, 101, 80, 96, 67, 103)(76, 106, 91, 97, 89, 92)(81, 86, 99, 88, 105, 83)(109, 184, 153, 138, 114, 150)(110, 142, 176, 117, 133, 135)(111, 127, 140)(112, 167, 175, 143, 208, 186)(113, 137, 202, 181, 194, 189)(115, 212, 126, 191, 206, 144)(116, 172, 156, 174, 168, 164)(118, 204, 141, 122, 185, 173)(119, 155, 200)(120, 136, 154, 134, 213, 146)(121, 163, 203, 130, 161, 187)(123, 210, 216, 179, 171, 128)(124, 183, 197, 180, 215, 129)(125, 177, 162, 182, 201, 166)(131, 157, 165, 190, 152, 149)(132, 148, 196, 195, 158, 139)(145, 169, 199, 159, 211, 198)(147, 151, 192, 209, 205, 188)(160, 214, 207)(170, 178, 193)
d: (1, 2, 48, 102, 74, 44, 61, 104, 46, 8, 14, 63, 100, 38, 26, 85, 96, 28)(3, 27, 92, 73, 45, 62, 88, 78, 13, 7, 12, 81, 77, 43, 58, 91, 66, 5)(4, 56, 67, 93, 57, 18, 59, 97, 64, 25, 31, 86, 87, 15, 24, 47, 107, 60)(6, 76, 95, 30, 42, 29, 101, 71, 19, 37, 79, 82, 36, 9, 72, 105, 49, 41)(10, 33, 83, 98, 55, 22, 35, 103, 75, 39, 54, 70, 84, 32, 11, 52, 106, 65)(16, 80, 94, 34, 23, 50, 99, 51, 40, 53, 89, 90, 17, 20, 69, 108, 68, 21)(109, 194, 182, 180, 178, 124, 125, 137, 138, 122, 120, 142, 144, 111, 126, 133, 134, 118)(110, 143, 141, 123, 113, 132, 129, 119, 197, 195, 181, 179, 173, 112, 117, 130, 140, 121)(114, 175, 177, 187, 193, 203, 201, 186, 184, 216, 213, 196, 191, 200, 115, 139, 136, 128)(116, 127, 174, 176, 190, 185, 199, 202, 192, 183, 214, 215, 188, 189, 198, 204, 131, 135)(145, 154, 147, 212, 207, 206, 209, 146, 159, 153, 152, 166, 168, 170, 172, 162, 157, 150)(148, 149, 210, 211, 208, 205, 163, 160, 161, 151, 167, 169, 171, 165, 158, 156, 155, 164)
e: (3, 7)(4, 10)(5, 13)(6, 16)(9, 20)(11, 24)(12, 27)(15, 32)(17, 36)(18, 22)(19, 40)(21, 41)(23, 42)(25, 39)(29, 50)(30, 34)(31, 54)(33, 56)(35, 59)(37, 53)(43, 45)(47, 52)(49, 68)(51, 71)(55, 57)(58, 62)(60, 65)(64, 75)(66, 78)(67, 83)(69, 72)(70, 86)(73, 77)(76, 80)(79, 89)(81, 92)(82, 90)(84, 87)(88, 91)(93, 98)(94, 95)(97, 103)(99, 101)(105, 108)(106, 107)(109, 145)(110, 148)(111, 170)(112, 165)(113, 208)(114, 216)(115, 203)(117, 158)(118, 150)(119, 160)(120, 152)(121, 164)(122, 153)(123, 211)(124, 206)(125, 209)(126, 172)(128, 184)(129, 163)(130, 156)(132, 205)(133, 162)(134, 157)(136, 186)(137, 146)(138, 159)(139, 201)(140, 155)(141, 210)(142, 166)(143, 149)(144, 168)(147, 182)(151, 195)(154, 194)(161, 197)(167, 181)(169, 179)(171, 173)(175, 213)(177, 196)(178, 207)(180, 212)(187, 191)(193, 200)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 24 ]
216
-1 145 150 118 109
-2 154 145 194 109
-3 155 119 164 197
-4 169 204 184 109
-5 155 156 129 119
-6 165 213 204 109
-7 121 160 161 140
-8 122 159 138 153
-9 111 203 214 161
-10 145 179 204 128
-11 200 215 172 119
-12 110 121 161 151
-13 160 140 130 163
-14 122 152 120 153
-15 187 111 214 163
-16 112 145 204 175
-17 200 168 183 119
-18 155 200 124 174
-19 211 114 138 185
-20 115 170 214 197
-21 198 114 150 173
-22 193 140 206 174
-23 121 203 127 207
-24 126 160 193 215
-25 122 199 210 128
-26 111 126 170 172
-27 148 195 164 197
-28 134 157 150 118
-29 124 148 139 174
-30 155 200 180 116
-31 211 114 202 120
-32 191 170 214 129
-33 154 114 173 131
-34 212 116 193 140
-35 121 176 209 203
-36 144 160 193 183
-37 122 199 175 208
-38 111 144 168 170
-39 199 184 141 153
-40 123 159 216 185
-41 198 171 216 118
-42 178 115 127 164
-43 123 169 171 141
-44 178 124 206 207
-45 210 211 179 173
-46 146 137 159 138
-47 133 188 203 161
-48 154 147 182 194
-49 134 189 169 184
-50 110 201 206 174
-51 146 190 184 141
-52 188 115 162 197
-53 199 113 213 153
-54 123 202 216 152
-55 187 127 130 207
-56 171 194 216 131
-57 156 178 191 127
-58 165 123 113 171
-59 176 125 115 164
-60 198 167 118 186
-61 209 124 125 206
-62 112 211 173 208
-63 166 152 120 142
-64 136 138 149 185
-65 198 136 181 150
-66 132 156 158 129
-67 165 135 213 182
-68 189 157 179 128
-69 215 139 172 195
-70 166 113 213 192
-71 210 190 137 128
-72 201 126 215 151
-73 210 179 181 149
-74 178 212 180 207
-75 143 159 185 186
-76 158 194 196 131
-77 143 167 169 141
-78 117 205 130 163
-79 177 202 205 120
-80 154 177 117 131
-81 110 143 167 151
-82 187 192 163 142
-83 112 135 147 175
-84 132 168 183 196
-85 133 126 172 162
-86 192 142 175 208
-87 144 177 183 205
-88 112 117 205 208
-89 132 202 152 196
-90 166 191 192 129
-91 132 165 113 158
-92 148 181 149 195
-93 158 180 116 196
-94 187 135 147 130
-95 156 135 191 182
-96 133 134 157 162
-97 190 137 148 139
-98 177 212 116 117
-99 143 176 209 186
-100 144 166 168 142
-101 176 125 136 149
-102 212 147 180 182
-103 110 146 190 201
-104 209 146 125 137
-105 133 188 167 186
-106 189 157 139 195
-107 134 189 201 151
-108 188 136 181 162
-109 1 2 4 6
-110 12 81 103 50
-111 15 26 38 9
-112 88 16 83 62
-113 58 91 70 53
-114 33 19 31 21
-115 59 52 20 42
-116 34 93 30 98
-117 88 78 80 98
-118 1 60 28 41
-119 11 3 5 17
-120 79 14 63 31
-121 12 23 35 7
-122 14 25 37 8
-123 58 40 43 54
-124 44 61 18 29
-125 101 59 104 61
-126 24 26 72 85
-127 55 23 57 42
-128 68 25 71 10
-129 66 90 5 32
-130 55 78 13 94
-131 33 56 80 76
-132 66 89 91 84
-133 47 105 85 96
-134 49 28 96 107
-135 67 83 94 95
-136 101 64 108 65
-137 46 71 104 97
-138 46 8 19 64
-139 69 29 106 97
-140 22 34 13 7
-141 77 39 51 43
-142 100 82 63 86
-143 77 99 81 75
-144 100 36 38 87
-145 1 2 16 10
-146 46 103 104 51
-147 102 48 83 94
-148 92 27 29 97
-149 101 92 73 64
-150 1 28 21 65
-151 12 81 72 107
-152 89 14 63 54
-153 14 39 8 53
-154 33 2 80 48
-155 3 5 18 30
-156 66 57 5 95
-157 68 28 106 96
-158 66 91 93 76
-159 46 40 8 75
-160 13 24 36 7
-161 12 47 7 9
-162 52 85 96 108
-163 78 13 15 82
-164 3 59 27 42
-165 67 58 91 6
-166 100 90 70 63
-167 77 81 60 105
-168 100 38 17 84
-169 77 4 49 43
-170 26 38 20 32
-171 56 58 41 43
-172 11 69 26 85
-173 33 45 62 21
-174 22 50 18 29
-175 37 16 83 86
-176 99 35 101 59
-177 79 80 87 98
-178 44 57 74 42
-179 45 68 73 10
-180 102 93 30 74
-181 92 73 108 65
-182 67 102 48 95
-183 36 17 84 87
-184 4 49 39 51
-185 40 19 64 75
-186 99 60 105 75
-187 55 15 82 94
-188 47 105 52 108
-189 68 49 106 107
-190 103 71 51 97
-191 57 90 95 32
-192 90 70 82 86
-193 22 34 24 36
-194 56 2 48 76
-195 69 92 27 106
-196 89 93 84 76
-197 3 27 52 20
-198 60 41 21 65
-199 25 37 39 53
-200 11 17 18 30
-201 103 50 72 107
-202 89 79 31 54
-203 23 35 47 9
-204 4 16 6 10
-205 88 78 79 87
-206 22 44 50 61
-207 44 55 23 74
-208 88 37 62 86
-209 99 35 104 61
-210 45 25 71 73
-211 45 62 19 31
-212 34 102 74 98
-213 67 70 6 53
-214 15 9 20 32
-215 11 24 69 72
-216 56 40 41 54
0

**************