[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 216, 27 ]. See Glossary for some
detail.
CPM( 3, 2, 12, 1) = CPM( 6, 2, 12, 1) = AMC( 24, 3, [ 0. 1: 2.
0])
= UG(ATD[216, 48]) = UG(ATD[216, 49]) = UG(ATD[216, 50])
= ATD[ 9, 1]#ATD[ 12, 2] = ATD[ 9, 1]#ATD[ 36, 8] = ATD[ 12,
2]#ATD[ 18, 1]
= ATD[ 12, 2]#ATD[ 36, 8] = ATD[ 18, 1]#ATD[ 36, 8] = ATD[ 36,
8]#DCyc[ 3]
= ATD[ 36, 8]#DCyc[ 6] = ATD[ 36, 8]#ATD[ 36, 8] = UG(Rmap(432, 38) {
24, 4| 6}_ 24)
= UG(Rmap(432, 41) { 24, 4| 6}_ 24) = MG(Rmap(216, 45) { 6, 24| 6}_ 24) =
DG(Rmap(216, 45) { 6, 24| 6}_ 24)
= MG(Rmap(216, 46) { 6, 24| 6}_ 24) = DG(Rmap(216, 46) { 6, 24| 6}_ 24) =
DG(Rmap(216, 54) { 24, 6| 6}_ 24)
= DG(Rmap(216, 55) { 24, 6| 6}_ 24) = BGCG(DW( 3, 3), C_ 12, 1) = BGCG(DW(
12, 3), C_ 3, 3)
= BGCG(CPM( 3, 2, 6, 1); K1;{8, 10}) = AT[216, 7]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | - | 0 | - | 0 22 | - | - |
2 | - | - | - | 0 | 14 | 0 | 10 | - | - |
3 | 0 | - | - | - | - | 1 | - | 5 | 5 |
4 | - | 0 | - | 11 13 | 23 | - | - | - | - |
5 | 0 | 10 | - | 1 | - | 21 | - | - | - |
6 | - | 0 | 23 | - | 3 | - | - | 17 | - |
7 | 0 2 | 14 | - | - | - | - | - | 3 | - |
8 | - | - | 19 | - | - | 7 | 21 | - | 15 |
9 | - | - | 19 | - | - | - | - | 9 | 11 13 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | - | 0 | - | 0 | - |
2 | - | - | - | 8 | 0 | - | - | 12 | 0 |
3 | 0 | - | - | 1 | 13 | - | 13 | - | - |
4 | 0 | 16 | 23 | - | - | - | - | 3 | - |
5 | - | 0 | 11 | - | - | - | 23 | - | 1 |
6 | 0 | - | - | - | - | - | 9 | 23 | 15 |
7 | - | - | 11 | - | 1 | 15 | - | - | 5 |
8 | 0 | 12 | - | 21 | - | 1 | - | - | - |
9 | - | 0 | - | - | 23 | 9 | 19 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | - | 0 | - | 0 |
2 | - | - | 0 | - | - | 0 | - | 0 | 12 |
3 | - | 0 | - | - | 9 | 21 | - | - | 1 |
4 | 0 | - | - | - | - | - | 3 | 15 | 19 |
5 | 0 | - | 15 | - | - | 23 | 19 | - | - |
6 | - | 0 | 3 | - | 1 | - | - | 11 | - |
7 | 0 | - | - | 21 | 5 | - | - | 7 | - |
8 | - | 0 | - | 9 | - | 13 | 17 | - | - |
9 | 0 | 12 | 23 | 5 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 2 | - | 0 | - | - |
2 | 0 | - | - | - | - | 1 3 | 15 | - | - |
3 | - | - | 11 13 | - | 14 | 0 | - | - | - |
4 | - | - | - | - | - | - | 16 18 | 0 | 0 |
5 | 0 22 | - | 10 | - | - | - | - | - | 21 |
6 | - | 21 23 | 0 | - | - | - | - | 5 | - |
7 | 0 | 9 | - | 6 8 | - | - | - | - | - |
8 | - | - | - | 0 | - | 19 | - | 11 13 | - |
9 | - | - | - | 0 | 3 | - | - | - | 11 13 |