C4graphConstructions for C4[ 216, 27 ] = CPM(3,2,12,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 216, 27 ]. See Glossary for some detail.

CPM( 3, 2, 12, 1) = CPM( 6, 2, 12, 1) = AMC( 24, 3, [ 0. 1: 2. 0])

      = UG(ATD[216, 48]) = UG(ATD[216, 49]) = UG(ATD[216, 50])

      = ATD[ 9, 1]#ATD[ 12, 2] = ATD[ 9, 1]#ATD[ 36, 8] = ATD[ 12, 2]#ATD[ 18, 1]

      = ATD[ 12, 2]#ATD[ 36, 8] = ATD[ 18, 1]#ATD[ 36, 8] = ATD[ 36, 8]#DCyc[ 3]

      = ATD[ 36, 8]#DCyc[ 6] = ATD[ 36, 8]#ATD[ 36, 8] = UG(Rmap(432, 38) { 24, 4| 6}_ 24)

      = UG(Rmap(432, 41) { 24, 4| 6}_ 24) = MG(Rmap(216, 45) { 6, 24| 6}_ 24) = DG(Rmap(216, 45) { 6, 24| 6}_ 24)

      = MG(Rmap(216, 46) { 6, 24| 6}_ 24) = DG(Rmap(216, 46) { 6, 24| 6}_ 24) = DG(Rmap(216, 54) { 24, 6| 6}_ 24)

      = DG(Rmap(216, 55) { 24, 6| 6}_ 24) = BGCG(DW( 3, 3), C_ 12, 1) = BGCG(DW( 12, 3), C_ 3, 3)

      = BGCG(CPM( 3, 2, 6, 1); K1;{8, 10}) = AT[216, 7]

Cyclic coverings

mod 24:
123456789
1 - - 0 - 0 - 0 22 - -
2 - - - 0 14 0 10 - -
3 0 - - - - 1 - 5 5
4 - 0 - 11 13 23 - - - -
5 0 10 - 1 - 21 - - -
6 - 0 23 - 3 - - 17 -
7 0 2 14 - - - - - 3 -
8 - - 19 - - 7 21 - 15
9 - - 19 - - - - 9 11 13

mod 24:
123456789
1 - - 0 0 - 0 - 0 -
2 - - - 8 0 - - 12 0
3 0 - - 1 13 - 13 - -
4 0 16 23 - - - - 3 -
5 - 0 11 - - - 23 - 1
6 0 - - - - - 9 23 15
7 - - 11 - 1 15 - - 5
8 0 12 - 21 - 1 - - -
9 - 0 - - 23 9 19 - -

mod 24:
123456789
1 - - - 0 0 - 0 - 0
2 - - 0 - - 0 - 0 12
3 - 0 - - 9 21 - - 1
4 0 - - - - - 3 15 19
5 0 - 15 - - 23 19 - -
6 - 0 3 - 1 - - 11 -
7 0 - - 21 5 - - 7 -
8 - 0 - 9 - 13 17 - -
9 0 12 23 5 - - - - -

mod 24:
123456789
1 - 0 - - 0 2 - 0 - -
2 0 - - - - 1 3 15 - -
3 - - 11 13 - 14 0 - - -
4 - - - - - - 16 18 0 0
5 0 22 - 10 - - - - - 21
6 - 21 23 0 - - - - 5 -
7 0 9 - 6 8 - - - - -
8 - - - 0 - 19 - 11 13 -
9 - - - 0 3 - - - 11 13