C4graphGraph forms for C4 [ 216, 37 ] = UG(ATD[216,9])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 37 ] = UG(ATD[216,9]).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {72, 74}, {180, 182}, {72, 77}, {120, 127}, {54, 60}, {66, 73}, {35, 47}, {196, 200}, {160, 172}, {66, 78}, {18, 31}, {180, 185}, {161, 172}, {35, 44}, {196, 203}, {51, 60}, {97, 113}, {162, 178}, {108, 124}, {97, 112}, {130, 147}, {1, 19}, {136, 154}, {137, 154}, {43, 63}, {174, 186}, {130, 150}, {43, 62}, {105, 124}, {4, 19}, {3, 27}, {164, 188}, {67, 91}, {2, 27}, {165, 188}, {36, 61}, {35, 57}, {39, 61}, {34, 57}, {174, 181}, {33, 61}, {106, 118}, {107, 118}, {139, 149}, {139, 148}, {17, 48}, {64, 98}, {65, 98}, {142, 173}, {67, 96}, {1, 37}, {145, 181}, {18, 54}, {87, 115}, {91, 127}, {139, 173}, {135, 160}, {24, 48}, {27, 51}, {1, 40}, {145, 184}, {26, 51}, {90, 115}, {66, 104}, {141, 167}, {138, 160}, {74, 97}, {140, 167}, {12, 32}, {131, 175}, {159, 178}, {9, 39}, {153, 183}, {74, 100}, {9, 38}, {153, 182}, {79, 96}, {12, 35}, {93, 114}, {151, 167}, {6, 55}, {151, 166}, {79, 126}, {131, 178}, {93, 111}, {24, 43}, {76, 127}, {79, 123}, {84, 96}, {87, 99}, {87, 98}, {1, 55}, {147, 165}, {75, 125}, {73, 127}, {18, 36}, {89, 111}, {75, 124}, {88, 111}, {83, 107}, {137, 177}, {137, 176}, {5, 63}, {28, 38}, {13, 54}, {147, 168}, {80, 107}, {2, 63}, {14, 48}, {25, 38}, {12, 78}, {21, 81}, {20, 81}, {14, 72}, {30, 89}, {50, 117}, {30, 86}, {158, 214}, {129, 201}, {7, 78}, {159, 214}, {50, 120}, {8, 68}, {2, 79}, {157, 208}, {14, 67}, {132, 201}, {131, 205}, {8, 71}, {130, 205}, {2, 82}, {136, 216}, {8, 89}, {25, 72}, {11, 89}, {155, 201}, {21, 71}, {21, 70}, {53, 102}, {42, 121}, {50, 102}, {10, 92}, {38, 112}, {63, 104}, {155, 204}, {142, 214}, {32, 121}, {142, 215}, {41, 112}, {19, 73}, {54, 108}, {44, 118}, {7, 92}, {157, 198}, {44, 119}, {25, 69}, {37, 121}, {49, 108}, {136, 213}, {15, 81}, {158, 192}, {149, 203}, {32, 126}, {15, 80}, {149, 202}, {22, 73}, {6, 102}, {26, 122}, {18, 114}, {9, 105}, {8, 105}, {163, 194}, {161, 192}, {55, 86}, {20, 117}, {23, 117}, {170, 200}, {170, 201}, {183, 212}, {162, 198}, {166, 194}, {58, 95}, {58, 92}, {6, 97}, {39, 64}, {26, 125}, {56, 80}, {57, 80}, {17, 125}, {58, 86}, {16, 125}, {186, 212}, {3, 115}, {168, 216}, {160, 208}, {45, 93}, {36, 85}, {45, 92}, {7, 117}, {190, 204}, {53, 71}, {7, 116}, {52, 71}, {17, 98}, {17, 101}, {3, 118}, {167, 210}, {24, 109}, {164, 210}, {184, 206}, {176, 199}, {185, 206}, {190, 199}, {176, 202}, {37, 94}, {163, 216}, {15, 114}, {19, 109}, {37, 91}, {36, 90}, {30, 158}, {46, 174}, {39, 166}, {22, 149}, {56, 187}, {22, 146}, {65, 197}, {50, 182}, {28, 152}, {27, 158}, {51, 182}, {46, 171}, {29, 152}, {41, 175}, {56, 190}, {40, 175}, {61, 186}, {31, 150}, {95, 214}, {67, 200}, {77, 198}, {42, 166}, {77, 193}, {65, 205}, {95, 211}, {62, 179}, {31, 145}, {70, 200}, {62, 176}, {45, 162}, {47, 191}, {69, 213}, {59, 171}, {20, 133}, {68, 213}, {83, 194}, {29, 143}, {48, 162}, {41, 187}, {4, 151}, {65, 210}, {56, 171}, {47, 188}, {12, 159}, {55, 163}, {13, 152}, {26, 143}, {9, 159}, {13, 155}, {83, 197}, {4, 156}, {52, 172}, {10, 146}, {11, 146}, {52, 173}, {30, 132}, {20, 136}, {25, 132}, {95, 193}, {60, 163}, {94, 193}, {11, 171}, {45, 141}, {42, 138}, {116, 212}, {11, 170}, {44, 141}, {110, 207}, {21, 183}, {49, 147}, {105, 203}, {122, 216}, {16, 179}, {49, 146}, {104, 203}, {116, 215}, {14, 168}, {33, 135}, {15, 168}, {33, 134}, {5, 172}, {122, 211}, {106, 192}, {109, 199}, {43, 128}, {5, 169}, {23, 187}, {22, 187}, {46, 128}, {24, 183}, {42, 133}, {101, 213}, {101, 212}, {46, 156}, {113, 195}, {47, 156}, {53, 134}, {113, 194}, {119, 196}, {114, 199}, {103, 209}, {119, 193}, {57, 129}, {40, 145}, {106, 209}, {40, 148}, {53, 137}, {60, 129}, {13, 179}, {59, 133}, {113, 207}, {58, 133}, {16, 208}, {110, 174}, {121, 185}, {16, 209}, {85, 151}, {82, 150}, {94, 154}, {123, 191}, {10, 207}, {83, 150}, {94, 155}, {116, 177}, {122, 191}, {124, 185}, {119, 177}, {23, 208}, {110, 169}, {31, 215}, {3, 202}, {90, 144}, {70, 141}, {6, 202}, {75, 135}, {74, 135}, {64, 142}, {64, 143}, {85, 154}, {90, 139}, {123, 170}, {29, 207}, {29, 206}, {76, 152}, {76, 153}, {5, 211}, {70, 144}, {123, 173}, {4, 211}, {106, 189}, {115, 164}, {10, 210}, {28, 196}, {84, 140}, {96, 184}, {28, 197}, {91, 130}, {23, 205}, {100, 190}, {84, 143}, {100, 191}, {120, 164}, {34, 195}, {107, 138}, {109, 140}, {87, 181}, {99, 129}, {104, 138}, {82, 177}, {86, 181}, {99, 128}, {34, 198}, {77, 169}, {76, 169}, {88, 189}, {93, 184}, {82, 180}, {85, 189}, {110, 134}, {41, 192}, {111, 134}, {59, 209}, {88, 178}, {68, 175}, {78, 165}, {88, 179}, {32, 204}, {33, 204}, {75, 165}, {68, 180}, {81, 161}, {100, 148}, {101, 148}, {49, 195}, {34, 215}, {59, 206}, {84, 161}, {52, 195}, {103, 144}, {66, 186}, {69, 189}, {69, 188}, {62, 197}, {102, 157}, {103, 156}, {108, 144}, {112, 140}, {120, 132}, {126, 131}, {99, 157}, {103, 153}, {126, 128} }>;

(II) A more general form is to represent the graph as the orbit of {72, 74} under the group generated by the following permutations:

a: (1, 3, 5)(2, 4, 6)(7, 11, 9)(8, 12, 10)(13, 17, 15)(14, 18, 16)(19, 202, 63)(20, 201, 64)(21, 204, 65)(22, 203, 66)(23, 200, 61)(24, 199, 62)(25, 215, 59)(26, 216, 60)(27, 211, 55)(28, 212, 56)(29, 213, 57)(30, 214, 58)(31, 209, 72)(32, 210, 71)(33, 205, 70)(34, 206, 69)(35, 207, 68)(36, 208, 67)(37, 115, 172)(38, 116, 171)(39, 117, 170)(40, 118, 169)(41, 119, 174)(42, 120, 173)(43, 109, 176)(44, 110, 175)(45, 111, 178)(46, 112, 177)(47, 113, 180)(48, 114, 179)(49, 124, 165)(50, 123, 166)(51, 122, 163)(52, 121, 164)(53, 126, 167)(54, 125, 168)(73, 149, 104)(74, 150, 103)(75, 147, 108)(76, 148, 107)(77, 145, 106)(78, 146, 105)(79, 151, 102)(80, 152, 101)(81, 155, 98)(82, 156, 97)(83, 153, 100)(84, 154, 99)(85, 157, 96)(86, 158, 95)(87, 161, 94)(88, 162, 93)(89, 159, 92)(90, 160, 91)(127, 139, 138)(128, 140, 137)(129, 143, 136)(130, 144, 135)(131, 141, 134)(132, 142, 133)(181, 192, 193)(182, 191, 194)(183, 190, 197)(184, 189, 198)(185, 188, 195)(186, 187, 196)
b: (1, 2)(3, 6)(4, 5)(7, 17)(8, 18)(9, 15)(10, 16)(11, 13)(12, 14)(19, 63)(20, 64)(21, 61)(22, 62)(23, 65)(24, 66)(25, 57)(26, 58)(27, 55)(28, 56)(29, 59)(30, 60)(31, 68)(32, 67)(33, 70)(34, 69)(35, 72)(36, 71)(37, 79)(38, 80)(39, 81)(40, 82)(41, 83)(42, 84)(43, 73)(44, 74)(45, 75)(46, 76)(47, 77)(48, 78)(49, 88)(50, 87)(51, 86)(52, 85)(53, 90)(54, 89)(91, 126)(92, 125)(93, 124)(94, 123)(95, 122)(96, 121)(97, 118)(98, 117)(99, 120)(100, 119)(101, 116)(102, 115)(103, 110)(104, 109)(105, 114)(106, 113)(107, 112)(108, 111)(127, 128)(129, 132)(130, 131)(133, 143)(134, 144)(135, 141)(136, 142)(137, 139)(138, 140)(145, 180)(146, 179)(147, 178)(148, 177)(149, 176)(150, 175)(151, 172)(152, 171)(153, 174)(154, 173)(155, 170)(156, 169)(157, 164)(158, 163)(159, 168)(160, 167)(161, 166)(162, 165)(181, 182)(183, 186)(184, 185)(187, 197)(188, 198)(189, 195)(190, 196)(191, 193)(192, 194)(199, 203)(200, 204)(207, 209)(208, 210)(213, 215)(214, 216)
c: (1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)(13, 16)(14, 15)(17, 18)(19, 92)(20, 91)(21, 96)(22, 95)(23, 94)(24, 93)(25, 107)(26, 108)(27, 105)(28, 106)(29, 103)(30, 104)(31, 101)(32, 102)(33, 99)(34, 100)(35, 97)(36, 98)(37, 117)(38, 118)(39, 115)(40, 116)(41, 119)(42, 120)(43, 111)(44, 112)(45, 109)(46, 110)(47, 113)(48, 114)(49, 122)(50, 121)(51, 124)(52, 123)(53, 126)(54, 125)(55, 78)(56, 77)(57, 74)(58, 73)(59, 76)(60, 75)(61, 87)(62, 88)(63, 89)(64, 90)(65, 85)(66, 86)(67, 81)(68, 82)(69, 83)(70, 84)(71, 79)(72, 80)(127, 133)(128, 134)(129, 135)(130, 136)(131, 137)(132, 138)(139, 142)(140, 141)(143, 144)(145, 212)(146, 211)(147, 216)(148, 215)(149, 214)(150, 213)(151, 210)(152, 209)(153, 206)(154, 205)(155, 208)(156, 207)(157, 204)(158, 203)(159, 202)(160, 201)(161, 200)(162, 199)(163, 165)(164, 166)(169, 171)(170, 172)(175, 177)(176, 178)(181, 186)(182, 185)(183, 184)(187, 193)(188, 194)(189, 197)(190, 198)(191, 195)(192, 196)
d: (3, 5)(4, 6)(7, 11)(8, 12)(13, 17)(14, 18)(19, 55)(20, 56)(21, 57)(22, 58)(23, 59)(24, 60)(25, 61)(26, 62)(27, 63)(28, 64)(29, 65)(30, 66)(31, 67)(32, 68)(33, 69)(34, 70)(35, 71)(36, 72)(37, 40)(38, 39)(41, 42)(43, 51)(44, 52)(45, 49)(46, 50)(47, 53)(48, 54)(73, 86)(74, 85)(75, 88)(76, 87)(77, 90)(78, 89)(79, 82)(80, 81)(83, 84)(91, 145)(92, 146)(93, 147)(94, 148)(95, 149)(96, 150)(97, 151)(98, 152)(99, 153)(100, 154)(101, 155)(102, 156)(103, 157)(104, 158)(105, 159)(106, 160)(107, 161)(108, 162)(109, 163)(110, 164)(111, 165)(112, 166)(113, 167)(114, 168)(115, 169)(116, 170)(117, 171)(118, 172)(119, 173)(120, 174)(121, 175)(122, 176)(123, 177)(124, 178)(125, 179)(126, 180)(127, 181)(128, 182)(129, 183)(130, 184)(131, 185)(132, 186)(133, 187)(134, 188)(135, 189)(136, 190)(137, 191)(138, 192)(139, 193)(140, 194)(141, 195)(142, 196)(143, 197)(144, 198)(199, 216)(200, 215)(201, 212)(202, 211)(203, 214)(204, 213)(205, 206)(207, 210)(208, 209)
e: (1, 19, 73, 127, 91, 37)(2, 20, 74, 128, 92, 38)(3, 21, 75, 129, 93, 39)(4, 22, 76, 130, 94, 40)(5, 23, 77, 131, 95, 41)(6, 24, 78, 132, 96, 42)(7, 25, 79, 133, 97, 43)(8, 26, 80, 134, 98, 44)(9, 27, 81, 135, 99, 45)(10, 28, 82, 136, 100, 46)(11, 29, 83, 137, 101, 47)(12, 30, 84, 138, 102, 48)(13, 31, 85, 139, 103, 49)(14, 32, 86, 140, 104, 50)(15, 33, 87, 141, 105, 51)(16, 34, 88, 142, 106, 52)(17, 35, 89, 143, 107, 53)(18, 36, 90, 144, 108, 54)(55, 109, 66, 120, 67, 121)(56, 110, 65, 119, 68, 122)(57, 111, 64, 118, 71, 125)(58, 112, 63, 117, 72, 126)(59, 113, 62, 116, 69, 123)(60, 114, 61, 115, 70, 124)(145, 151, 149, 153, 147, 155)(146, 152, 150, 154, 148, 156)(157, 162, 159, 158, 161, 160)(163, 199, 186, 164, 200, 185)(165, 201, 184, 166, 202, 183)(167, 203, 182, 168, 204, 181)(169, 205, 193, 175, 211, 187)(170, 206, 194, 176, 212, 188)(171, 207, 197, 177, 213, 191)(172, 208, 198, 178, 214, 192)(173, 209, 195, 179, 215, 189)(174, 210, 196, 180, 216, 190)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 37 ]
216
-1 55 37 40 19
-2 79 27 82 63
-3 202 27 115 118
-4 156 211 19 151
-5 211 169 172 63
-6 55 102 202 97
-7 78 92 116 117
-8 89 68 71 105
-9 38 159 39 105
-10 210 146 92 207
-11 89 146 170 171
-12 78 35 159 32
-13 155 179 152 54
-14 67 168 48 72
-15 80 168 81 114
-16 209 179 125 208
-17 101 48 125 98
-18 36 114 31 54
-19 1 4 73 109
-20 133 81 136 117
-21 70 81 71 183
-22 187 146 149 73
-23 187 117 205 208
-24 48 183 43 109
-25 132 69 38 72
-26 143 122 125 51
-27 2 3 158 51
-28 38 152 196 197
-29 143 206 152 207
-30 132 89 158 86
-31 145 215 18 150
-32 121 12 126 204
-33 134 135 61 204
-34 198 57 215 195
-35 44 12 57 47
-36 90 61 18 85
-37 121 1 91 94
-38 112 25 28 9
-39 166 61 9 64
-40 1 145 148 175
-41 187 112 192 175
-42 121 133 166 138
-43 24 62 128 63
-44 35 118 119 141
-45 92 93 162 141
-46 156 171 128 174
-47 188 35 156 191
-48 24 14 17 162
-49 146 147 195 108
-50 102 182 117 120
-51 26 27 60 182
-52 71 172 173 195
-53 134 102 71 137
-54 13 60 18 108
-55 1 6 86 163
-56 187 80 190 171
-57 34 35 80 129
-58 133 92 95 86
-59 209 133 171 206
-60 51 129 163 54
-61 33 36 39 186
-62 176 179 43 197
-63 2 5 104 43
-64 143 39 98 142
-65 210 205 98 197
-66 78 104 73 186
-67 200 14 91 96
-68 180 213 8 175
-69 188 189 25 213
-70 144 200 141 21
-71 8 52 53 21
-72 77 14 25 74
-73 22 66 127 19
-74 100 135 72 97
-75 165 124 135 125
-76 169 127 152 153
-77 198 169 72 193
-78 66 165 12 7
-79 2 123 126 96
-80 56 57 15 107
-81 15 161 20 21
-82 177 2 180 150
-83 150 194 107 197
-84 143 161 96 140
-85 154 189 36 151
-86 55 58 181 30
-87 99 115 181 98
-88 111 178 189 179
-89 11 111 8 30
-90 144 36 115 139
-91 67 37 127 130
-92 45 58 7 10
-93 45 111 114 184
-94 154 155 37 193
-95 211 58 214 193
-96 67 79 84 184
-97 112 113 6 74
-98 17 64 65 87
-99 157 128 129 87
-100 190 191 148 74
-101 212 213 148 17
-102 157 6 50 53
-103 209 144 156 153
-104 66 203 138 63
-105 124 203 8 9
-106 209 189 192 118
-107 80 83 138 118
-108 144 124 49 54
-109 199 24 19 140
-110 134 169 174 207
-111 88 89 134 93
-112 38 41 140 97
-113 194 195 97 207
-114 199 15 93 18
-115 90 3 87 164
-116 177 212 215 7
-117 23 50 7 20
-118 44 3 106 107
-119 44 177 193 196
-120 132 50 127 164
-121 37 42 185 32
-122 211 26 191 216
-123 79 191 170 173
-124 105 75 108 185
-125 26 16 17 75
-126 79 128 32 131
-127 91 73 76 120
-128 99 46 126 43
-129 99 57 201 60
-130 91 147 150 205
-131 178 126 205 175
-132 25 201 30 120
-133 58 59 20 42
-134 33 110 111 53
-135 33 160 74 75
-136 154 213 216 20
-137 154 176 177 53
-138 104 160 107 42
-139 90 148 149 173
-140 112 167 84 109
-141 44 45 167 70
-142 214 215 173 64
-143 26 29 84 64
-144 90 70 103 108
-145 181 40 184 31
-146 11 22 49 10
-147 165 168 49 130
-148 100 101 40 139
-149 22 202 203 139
-150 82 83 31 130
-151 166 167 4 85
-152 13 28 29 76
-153 103 182 183 76
-154 136 137 94 85
-155 13 201 94 204
-156 46 47 4 103
-157 99 198 102 208
-158 27 192 214 30
-159 12 178 214 9
-160 135 138 172 208
-161 81 192 84 172
-162 198 45 178 48
-163 55 60 194 216
-164 188 210 115 120
-165 78 188 147 75
-166 39 194 151 42
-167 210 140 151 141
-168 14 15 147 216
-169 77 110 5 76
-170 11 123 200 201
-171 11 56 46 59
-172 5 160 161 52
-173 123 139 52 142
-174 110 46 181 186
-175 68 40 41 131
-176 199 202 137 62
-177 82 137 116 119
-178 88 159 162 131
-179 88 13 16 62
-180 68 82 182 185
-181 145 86 174 87
-182 180 50 51 153
-183 24 212 21 153
-184 145 93 96 206
-185 121 124 180 206
-186 66 212 61 174
-187 22 23 56 41
-188 165 47 69 164
-189 88 69 106 85
-190 56 100 199 204
-191 100 122 123 47
-192 158 106 161 41
-193 77 94 95 119
-194 166 113 83 163
-195 34 113 49 52
-196 200 203 28 119
-197 28 83 62 65
-198 77 34 157 162
-199 176 190 114 109
-200 67 70 170 196
-201 132 155 170 129
-202 176 3 6 149
-203 104 105 149 196
-204 33 155 190 32
-205 23 130 65 131
-206 59 29 184 185
-207 110 113 29 10
-208 23 157 16 160
-209 59 103 16 106
-210 167 10 65 164
-211 122 4 5 95
-212 101 116 183 186
-213 68 101 69 136
-214 158 159 95 142
-215 34 116 31 142
-216 122 168 136 163
0

**************