C4graphGraph forms for C4 [ 216, 38 ] = UG(ATD[216,11])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 38 ] = UG(ATD[216,11]).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {177, 183}, {193, 199}, {177, 186}, {53, 57}, {98, 110}, {53, 56}, {193, 204}, {162, 175}, {99, 110}, {168, 184}, {172, 188}, {105, 120}, {168, 185}, {134, 151}, {1, 19}, {40, 58}, {130, 150}, {140, 152}, {131, 150}, {169, 188}, {140, 153}, {34, 52}, {162, 180}, {96, 118}, {4, 19}, {34, 53}, {96, 119}, {97, 121}, {192, 216}, {3, 25}, {2, 25}, {132, 159}, {34, 57}, {105, 117}, {134, 154}, {100, 121}, {33, 63}, {129, 159}, {32, 63}, {40, 55}, {7, 39}, {80, 112}, {7, 38}, {143, 174}, {80, 113}, {18, 48}, {133, 166}, {1, 37}, {16, 52}, {86, 114}, {17, 52}, {31, 57}, {143, 169}, {12, 36}, {130, 170}, {30, 54}, {1, 40}, {154, 179}, {154, 176}, {138, 166}, {12, 33}, {30, 51}, {130, 173}, {6, 55}, {139, 186}, {75, 122}, {16, 34}, {149, 167}, {16, 35}, {22, 37}, {72, 124}, {78, 122}, {72, 125}, {146, 167}, {134, 179}, {1, 55}, {136, 190}, {128, 182}, {19, 37}, {137, 190}, {5, 61}, {76, 116}, {77, 116}, {128, 185}, {86, 111}, {137, 179}, {64, 123}, {150, 173}, {145, 173}, {21, 43}, {139, 181}, {64, 126}, {2, 61}, {20, 43}, {15, 48}, {151, 215}, {135, 198}, {10, 72}, {144, 210}, {46, 108}, {45, 111}, {58, 127}, {28, 90}, {148, 210}, {38, 97}, {46, 105}, {4, 76}, {128, 200}, {59, 115}, {41, 97}, {22, 94}, {49, 123}, {28, 87}, {156, 215}, {131, 200}, {56, 115}, {49, 122}, {138, 198}, {4, 73}, {22, 91}, {16, 93}, {10, 69}, {13, 93}, {24, 73}, {155, 202}, {60, 109}, {152, 202}, {21, 70}, {12, 88}, {18, 70}, {18, 71}, {21, 67}, {41, 127}, {40, 127}, {132, 211}, {23, 79}, {136, 208}, {136, 209}, {148, 205}, {17, 75}, {55, 109}, {47, 117}, {38, 124}, {19, 73}, {17, 74}, {46, 117}, {20, 79}, {8, 84}, {54, 106}, {54, 107}, {27, 69}, {7, 88}, {144, 207}, {48, 111}, {38, 121}, {27, 68}, {11, 84}, {9, 105}, {15, 111}, {9, 104}, {15, 110}, {51, 81}, {50, 81}, {3, 103}, {189, 216}, {170, 194}, {3, 106}, {171, 194}, {6, 109}, {15, 99}, {14, 99}, {47, 66}, {43, 70}, {44, 66}, {190, 208}, {161, 206}, {191, 208}, {8, 120}, {161, 209}, {9, 120}, {42, 91}, {39, 85}, {25, 106}, {30, 106}, {6, 112}, {48, 70}, {10, 124}, {45, 87}, {49, 75}, {7, 124}, {45, 86}, {29, 102}, {26, 102}, {36, 88}, {36, 89}, {182, 203}, {35, 93}, {182, 200}, {37, 91}, {35, 92}, {52, 75}, {39, 88}, {65, 193}, {83, 211}, {44, 174}, {45, 174}, {85, 209}, {11, 141}, {26, 156}, {11, 140}, {65, 198}, {27, 156}, {14, 135}, {57, 176}, {42, 163}, {24, 145}, {5, 142}, {79, 196}, {83, 216}, {90, 209}, {13, 129}, {64, 204}, {60, 176}, {42, 166}, {24, 148}, {65, 204}, {5, 139}, {67, 205}, {58, 170}, {80, 192}, {84, 196}, {59, 170}, {11, 153}, {13, 159}, {89, 203}, {10, 153}, {67, 208}, {36, 183}, {18, 129}, {13, 158}, {83, 192}, {94, 202}, {17, 135}, {51, 165}, {51, 164}, {66, 213}, {62, 166}, {43, 178}, {77, 212}, {62, 167}, {94, 199}, {9, 147}, {77, 215}, {46, 178}, {32, 189}, {86, 203}, {35, 189}, {2, 157}, {12, 147}, {61, 157}, {116, 212}, {99, 195}, {117, 212}, {2, 160}, {50, 144}, {44, 142}, {39, 133}, {107, 201}, {44, 143}, {107, 200}, {102, 195}, {20, 178}, {60, 154}, {60, 155}, {31, 183}, {62, 146}, {127, 211}, {63, 146}, {31, 177}, {31, 176}, {42, 133}, {5, 181}, {98, 210}, {102, 214}, {112, 192}, {4, 181}, {33, 147}, {123, 201}, {33, 146}, {61, 142}, {62, 138}, {29, 171}, {115, 197}, {28, 171}, {123, 204}, {97, 214}, {101, 210}, {3, 187}, {118, 206}, {58, 130}, {114, 202}, {25, 160}, {114, 203}, {20, 175}, {30, 165}, {28, 160}, {6, 187}, {120, 197}, {115, 206}, {27, 165}, {50, 141}, {125, 188}, {125, 191}, {93, 158}, {96, 163}, {71, 129}, {94, 152}, {71, 128}, {95, 152}, {14, 198}, {126, 180}, {65, 138}, {112, 187}, {8, 196}, {74, 134}, {66, 142}, {26, 214}, {116, 184}, {8, 197}, {121, 180}, {74, 135}, {26, 215}, {14, 195}, {82, 159}, {119, 184}, {23, 199}, {85, 133}, {95, 143}, {100, 180}, {22, 199}, {125, 172}, {23, 196}, {95, 140}, {119, 163}, {24, 205}, {100, 177}, {113, 164}, {23, 193}, {122, 172}, {82, 132}, {113, 167}, {83, 132}, {118, 161}, {21, 205}, {73, 145}, {69, 156}, {84, 141}, {103, 190}, {77, 151}, {69, 153}, {126, 162}, {81, 141}, {103, 187}, {64, 157}, {74, 151}, {85, 136}, {29, 195}, {100, 186}, {108, 178}, {29, 194}, {119, 168}, {78, 145}, {101, 186}, {108, 179}, {79, 175}, {92, 188}, {68, 165}, {92, 189}, {78, 172}, {78, 173}, {126, 157}, {113, 149}, {108, 137}, {107, 131}, {118, 158}, {114, 155}, {63, 213}, {104, 131}, {68, 168}, {89, 183}, {101, 139}, {103, 137}, {89, 182}, {82, 162}, {76, 184}, {80, 164}, {32, 213}, {81, 164}, {92, 169}, {101, 144}, {56, 206}, {95, 169}, {98, 148}, {109, 155}, {56, 207}, {72, 191}, {98, 149}, {32, 216}, {49, 201}, {91, 163}, {59, 194}, {76, 181}, {87, 174}, {41, 211}, {53, 207}, {47, 213}, {90, 160}, {47, 212}, {90, 161}, {104, 147}, {110, 149}, {67, 191}, {87, 171}, {50, 207}, {68, 185}, {82, 175}, {59, 197}, {71, 185}, {96, 158}, {104, 150}, {41, 214}, {54, 201} }>;

(II) A more general form is to represent the graph as the orbit of {177, 183} under the group generated by the following permutations:

a: (1, 19, 37)(2, 20, 38)(3, 21, 39)(4, 22, 40)(5, 23, 41)(6, 24, 42)(7, 25, 43)(8, 26, 44)(9, 27, 45)(10, 28, 46)(11, 29, 47)(12, 30, 48)(13, 31, 49)(14, 32, 50)(15, 33, 51)(16, 34, 52)(17, 35, 53)(18, 36, 54)(55, 73, 91)(56, 74, 92)(57, 75, 93)(58, 76, 94)(59, 77, 95)(60, 78, 96)(61, 79, 97)(62, 80, 98)(63, 81, 99)(64, 82, 100)(65, 83, 101)(66, 84, 102)(67, 85, 103)(68, 86, 104)(69, 87, 105)(70, 88, 106)(71, 89, 107)(72, 90, 108)(109, 145, 163)(110, 146, 164)(111, 147, 165)(112, 148, 166)(113, 149, 167)(114, 150, 168)(115, 151, 169)(116, 152, 170)(117, 153, 171)(118, 154, 172)(119, 155, 173)(120, 156, 174)(121, 157, 175)(122, 158, 176)(123, 159, 177)(124, 160, 178)(125, 161, 179)(126, 162, 180)(127, 181, 199)(128, 182, 200)(129, 183, 201)(130, 184, 202)(131, 185, 203)(132, 186, 204)(133, 187, 205)(134, 188, 206)(135, 189, 207)(136, 190, 208)(137, 191, 209)(138, 192, 210)(139, 193, 211)(140, 194, 212)(141, 195, 213)(142, 196, 214)(143, 197, 215)(144, 198, 216)
b: (3, 5)(4, 6)(9, 11)(10, 12)(15, 17)(16, 18)(19, 55)(20, 56)(21, 57)(22, 58)(23, 59)(24, 60)(25, 61)(26, 62)(27, 63)(28, 64)(29, 65)(30, 66)(31, 67)(32, 68)(33, 69)(34, 70)(35, 71)(36, 72)(37, 40)(38, 39)(41, 42)(43, 53)(44, 54)(45, 49)(46, 50)(47, 51)(48, 52)(73, 109)(74, 110)(75, 111)(76, 112)(77, 113)(78, 114)(79, 115)(80, 116)(81, 117)(82, 118)(83, 119)(84, 120)(85, 121)(86, 122)(87, 123)(88, 124)(89, 125)(90, 126)(91, 127)(92, 128)(93, 129)(94, 130)(95, 131)(96, 132)(97, 133)(98, 134)(99, 135)(100, 136)(101, 137)(102, 138)(103, 139)(104, 140)(105, 141)(106, 142)(107, 143)(108, 144)(145, 155)(146, 156)(147, 153)(148, 154)(149, 151)(150, 152)(157, 160)(158, 159)(161, 162)(163, 211)(164, 212)(165, 213)(166, 214)(167, 215)(168, 216)(169, 200)(170, 199)(171, 204)(172, 203)(173, 202)(174, 201)(175, 206)(176, 205)(177, 208)(178, 207)(179, 210)(180, 209)(181, 187)(182, 188)(183, 191)(184, 192)(185, 189)(186, 190)(193, 194)(195, 198)(196, 197)
c: (1, 2)(3, 6)(4, 5)(7, 13)(8, 14)(9, 15)(10, 16)(11, 17)(12, 18)(19, 61)(20, 62)(21, 63)(22, 64)(23, 65)(24, 66)(25, 55)(26, 56)(27, 57)(28, 58)(29, 59)(30, 60)(31, 68)(32, 67)(33, 70)(34, 69)(35, 72)(36, 71)(37, 157)(38, 158)(39, 159)(40, 160)(41, 161)(42, 162)(43, 146)(44, 145)(45, 150)(46, 149)(47, 148)(48, 147)(49, 152)(50, 151)(51, 154)(52, 153)(53, 156)(54, 155)(73, 142)(74, 141)(75, 140)(76, 139)(77, 144)(78, 143)(79, 138)(80, 137)(81, 134)(82, 133)(83, 136)(84, 135)(85, 132)(86, 131)(87, 130)(88, 129)(89, 128)(90, 127)(91, 126)(92, 125)(93, 124)(94, 123)(95, 122)(96, 121)(97, 118)(98, 117)(99, 120)(100, 119)(101, 116)(102, 115)(103, 112)(104, 111)(105, 110)(106, 109)(107, 114)(108, 113)(163, 180)(164, 179)(165, 176)(166, 175)(167, 178)(168, 177)(169, 172)(170, 171)(173, 174)(183, 185)(184, 186)(189, 191)(190, 192)(195, 197)(196, 198)(199, 204)(200, 203)(201, 202)(205, 213)(206, 214)(207, 215)(208, 216)(209, 211)(210, 212)
d: (1, 7)(2, 8)(3, 11)(4, 12)(5, 9)(6, 10)(13, 14)(15, 18)(16, 17)(19, 88)(20, 87)(21, 86)(22, 85)(23, 90)(24, 89)(25, 84)(26, 83)(27, 80)(28, 79)(29, 82)(30, 81)(31, 78)(32, 77)(33, 76)(34, 75)(35, 74)(36, 73)(37, 39)(38, 40)(43, 45)(44, 46)(49, 53)(50, 54)(55, 124)(56, 123)(57, 122)(58, 121)(59, 126)(60, 125)(61, 120)(62, 119)(63, 116)(64, 115)(65, 118)(66, 117)(67, 114)(68, 113)(69, 112)(70, 111)(71, 110)(72, 109)(91, 133)(92, 134)(93, 135)(94, 136)(95, 137)(96, 138)(97, 127)(98, 128)(99, 129)(100, 130)(101, 131)(102, 132)(103, 140)(104, 139)(105, 142)(106, 141)(107, 144)(108, 143)(145, 183)(146, 184)(147, 181)(148, 182)(149, 185)(150, 186)(151, 189)(152, 190)(153, 187)(154, 188)(155, 191)(156, 192)(157, 197)(158, 198)(159, 195)(160, 196)(161, 193)(162, 194)(163, 166)(164, 165)(167, 168)(169, 179)(170, 180)(171, 175)(172, 176)(173, 177)(174, 178)(199, 209)(200, 210)(201, 207)(202, 208)(203, 205)(204, 206)(211, 214)(212, 213)(215, 216)
e: (1, 3, 5)(2, 4, 6)(7, 9, 11)(8, 10, 12)(13, 17, 15)(14, 18, 16)(19, 187, 61)(20, 188, 62)(21, 189, 65)(22, 190, 66)(23, 191, 63)(24, 192, 64)(25, 181, 55)(26, 182, 56)(27, 183, 59)(28, 184, 60)(29, 185, 57)(30, 186, 58)(31, 194, 68)(32, 193, 67)(33, 196, 72)(34, 195, 71)(35, 198, 70)(36, 197, 69)(37, 103, 142)(38, 104, 141)(39, 105, 140)(40, 106, 139)(41, 107, 144)(42, 108, 143)(43, 92, 138)(44, 91, 137)(45, 96, 134)(46, 95, 133)(47, 94, 136)(48, 93, 135)(49, 98, 132)(50, 97, 131)(51, 100, 130)(52, 99, 129)(53, 102, 128)(54, 101, 127)(73, 112, 157)(74, 111, 158)(75, 110, 159)(76, 109, 160)(77, 114, 161)(78, 113, 162)(79, 125, 146)(80, 126, 145)(81, 121, 150)(82, 122, 149)(83, 123, 148)(84, 124, 147)(85, 117, 152)(86, 118, 151)(87, 119, 154)(88, 120, 153)(89, 115, 156)(90, 116, 155)(163, 179, 174)(164, 180, 173)(165, 177, 170)(166, 178, 169)(167, 175, 172)(168, 176, 171)(199, 208, 213)(200, 207, 214)(201, 210, 211)(202, 209, 212)(203, 206, 215)(204, 205, 216)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 38 ]
216
-1 55 37 40 19
-2 25 157 61 160
-3 187 25 103 106
-4 181 73 19 76
-5 181 61 139 142
-6 55 187 112 109
-7 88 124 38 39
-8 84 196 120 197
-9 147 104 105 120
-10 69 124 72 153
-11 84 140 141 153
-12 33 88 36 147
-13 158 93 159 129
-14 99 198 135 195
-15 99 110 111 48
-16 34 35 93 52
-17 135 52 74 75
-18 48 70 71 129
-19 1 4 37 73
-20 79 178 43 175
-21 67 70 205 43
-22 199 91 37 94
-23 199 79 193 196
-24 145 148 73 205
-25 2 3 160 106
-26 156 102 214 215
-27 165 68 156 69
-28 90 160 171 87
-29 102 171 194 195
-30 165 51 106 54
-31 176 177 57 183
-32 189 213 216 63
-33 12 146 147 63
-34 57 16 52 53
-35 189 92 16 93
-36 88 12 89 183
-37 22 1 91 19
-38 121 124 7 97
-39 88 133 7 85
-40 55 1 58 127
-41 211 214 127 97
-42 133 166 91 163
-43 178 70 20 21
-44 66 143 174 142
-45 111 86 174 87
-46 178 105 117 108
-47 66 212 213 117
-48 111 15 70 18
-49 122 123 201 75
-50 144 81 141 207
-51 165 81 30 164
-52 34 16 17 75
-53 34 56 57 207
-54 201 106 30 107
-55 1 6 40 109
-56 115 206 53 207
-57 176 34 31 53
-58 170 127 40 130
-59 115 170 194 197
-60 154 176 155 109
-61 2 157 5 142
-62 166 167 146 138
-63 33 146 213 32
-64 123 157 126 204
-65 198 138 193 204
-66 44 47 213 142
-67 191 205 21 208
-68 165 168 27 185
-69 156 27 10 153
-70 48 18 21 43
-71 18 128 129 185
-72 124 125 191 10
-73 24 145 4 19
-74 134 135 17 151
-75 122 49 17 52
-76 4 181 116 184
-77 212 116 215 151
-78 122 145 172 173
-79 23 20 196 175
-80 112 113 192 164
-81 50 51 141 164
-82 132 159 162 175
-83 132 211 192 216
-84 11 8 141 196
-85 209 133 136 39
-86 45 111 114 203
-87 45 28 171 174
-88 12 36 39 7
-89 36 203 182 183
-90 209 28 160 161
-91 22 37 42 163
-92 188 35 189 169
-93 13 35 158 16
-94 22 199 202 152
-95 143 169 140 152
-96 158 118 119 163
-97 121 38 214 41
-98 110 210 148 149
-99 110 14 15 195
-100 121 177 180 186
-101 144 210 139 186
-102 26 214 29 195
-103 187 3 190 137
-104 147 150 9 131
-105 46 117 9 120
-106 3 25 30 54
-107 200 201 54 131
-108 46 178 179 137
-109 55 155 60 6
-110 99 15 149 98
-111 45 15 48 86
-112 187 80 192 6
-113 167 80 149 164
-114 155 202 203 86
-115 56 59 206 197
-116 77 212 184 76
-117 46 47 212 105
-118 158 161 96 206
-119 168 96 184 163
-120 105 8 9 197
-121 100 180 38 97
-122 78 49 172 75
-123 201 49 204 64
-124 38 72 7 10
-125 188 191 72 172
-126 157 180 162 64
-127 211 58 40 41
-128 200 71 182 185
-129 13 71 159 18
-130 58 170 150 173
-131 200 104 150 107
-132 211 82 159 83
-133 166 39 85 42
-134 154 179 74 151
-135 198 14 17 74
-136 209 190 85 208
-137 179 190 103 108
-138 198 166 62 65
-139 101 5 181 186
-140 11 95 152 153
-141 11 81 50 84
-142 44 66 5 61
-143 44 169 95 174
-144 210 101 50 207
-145 78 24 73 173
-146 33 167 62 63
-147 33 12 104 9
-148 210 24 205 98
-149 110 167 113 98
-150 104 173 130 131
-151 77 134 215 74
-152 202 94 95 140
-153 11 69 140 10
-154 176 134 179 60
-155 114 202 60 109
-156 69 26 27 215
-157 2 126 61 64
-158 13 93 96 118
-159 132 13 82 129
-160 2 90 25 28
-161 209 90 118 206
-162 180 82 126 175
-163 91 96 42 119
-164 80 113 81 51
-165 68 27 51 30
-166 133 138 62 42
-167 113 146 149 62
-168 68 184 119 185
-169 143 188 92 95
-170 58 59 194 130
-171 28 29 194 87
-172 78 122 188 125
-173 78 145 150 130
-174 44 143 45 87
-175 79 82 162 20
-176 154 57 60 31
-177 100 183 31 186
-178 46 20 108 43
-179 154 134 137 108
-180 121 100 126 162
-181 4 5 139 76
-182 89 200 203 128
-183 89 177 36 31
-184 168 116 119 76
-185 68 168 71 128
-186 100 177 101 139
-187 112 3 103 6
-188 92 125 169 172
-189 35 92 216 32
-190 103 136 137 208
-191 67 125 72 208
-192 112 80 83 216
-193 23 199 204 65
-194 59 170 171 29
-195 99 14 102 29
-196 23 79 84 8
-197 59 115 8 120
-198 14 135 138 65
-199 22 23 94 193
-200 182 128 107 131
-201 123 49 107 54
-202 155 114 94 152
-203 89 114 182 86
-204 123 193 64 65
-205 67 24 148 21
-206 56 115 161 118
-207 56 144 50 53
-208 67 190 136 191
-209 90 136 161 85
-210 144 101 148 98
-211 132 83 127 41
-212 77 47 116 117
-213 66 47 63 32
-214 102 26 41 97
-215 77 156 26 151
-216 189 192 83 32
0

**************