[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 216, 40 ]. See Glossary for some
detail.
UG(ATD[216, 15]) = UG(ATD[216, 16]) = MG(Cmap(216, 19) { 6, 18| 6}_ 36)
= MG(Cmap(216, 20) { 6, 18| 6}_ 36) = DG(Cmap(108, 1) { 6, 9| 6}_ 36) =
DG(Cmap(108, 2) { 6, 9| 6}_ 36)
= B(UG(ATD[108,3])) = HT[216, 8]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 | - | 0 1 | - | - | - | - | - |
2 | 0 | - | - | - | - | 0 | - | - | 0 | - | - | 0 |
3 | - | - | - | 0 | - | 7 8 | - | 0 | - | - | - | - |
4 | - | - | 0 | - | - | - | 8 | - | - | 2 | 2 | - |
5 | 0 | - | - | - | - | 15 | - | - | 11 | - | - | 8 |
6 | - | 0 | 10 11 | - | 3 | - | - | - | - | - | - | - |
7 | 0 17 | - | - | 10 | - | - | - | 7 | - | - | - | - |
8 | - | - | 0 | - | - | - | 11 | - | - | 9 | 12 | - |
9 | - | 0 | - | - | 7 | - | - | - | - | - | 1 2 | - |
10 | - | - | - | 16 | - | - | - | 9 | - | - | - | 16 17 |
11 | - | - | - | 16 | - | - | - | 6 | 16 17 | - | - | - |
12 | - | 0 | - | - | 10 | - | - | - | - | 1 2 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 17 | 0 | - | 0 | - | - | - | - | - | - | - | - |
2 | 0 | - | - | 3 | 0 | - | 0 | - | - | - | - | - |
3 | - | - | - | - | 16 | 0 | - | - | 0 | - | - | 0 |
4 | 0 | 15 | - | - | - | - | - | 11 | 4 | - | - | - |
5 | - | 0 | 2 | - | - | - | 15 | - | 5 | - | - | - |
6 | - | - | 0 | - | - | - | - | 14 | - | 0 | - | 15 |
7 | - | 0 | - | - | 3 | - | - | - | - | - | 16 | 15 |
8 | - | - | - | 7 | - | 4 | - | - | 8 | 1 | - | - |
9 | - | - | 0 | 14 | 13 | - | - | 10 | - | - | - | - |
10 | - | - | - | - | - | 0 | - | 17 | - | 7 11 | - | - |
11 | - | - | - | - | - | - | 2 | - | - | - | 5 13 | 2 |
12 | - | - | 0 | - | - | 3 | 3 | - | - | - | 16 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 | - | 0 | - | 0 | - | - | - |
2 | 0 | - | - | - | - | 0 | - | - | 3 | - | 0 | - |
3 | - | - | - | 0 | - | 14 | - | 0 | - | 0 | - | - |
4 | - | - | 0 | - | - | - | 14 | - | - | 15 | - | 8 |
5 | 0 | - | - | - | - | - | 15 | - | - | 14 | 14 | - |
6 | - | 0 | 4 | - | - | - | - | 1 | - | - | 15 | - |
7 | 0 | - | - | 4 | 3 | - | - | - | - | - | - | 15 |
8 | - | - | 0 | - | - | 17 | - | - | 4 | - | - | 12 |
9 | 0 | 15 | - | - | - | - | - | 14 | - | - | - | 5 |
10 | - | - | 0 | 3 | 4 | - | - | - | - | - | 3 | - |
11 | - | 0 | - | - | 4 | 3 | - | - | - | 15 | - | - |
12 | - | - | - | 10 | - | - | 3 | 6 | 13 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 | 0 | - | - | 0 | - | - | - |
2 | 0 | - | - | - | - | 1 | - | 0 | - | - | - | 0 |
3 | - | - | - | 0 | - | 5 | 0 | - | 13 | - | - | - |
4 | - | - | 0 | - | - | 4 | - | 1 | - | - | 10 | - |
5 | 0 | - | - | - | - | - | - | - | 17 | 0 | - | 4 |
6 | 0 | 17 | 13 | 14 | - | - | - | - | - | - | - | - |
7 | - | - | 0 | - | - | - | - | - | 14 | 17 | 6 | - |
8 | - | 0 | - | 17 | - | - | - | - | - | - | 10 | 17 |
9 | 0 | - | 5 | - | 1 | - | 4 | - | - | - | - | - |
10 | - | - | - | - | 0 | - | 1 | - | - | - | 6 | 5 |
11 | - | - | - | 8 | - | - | 12 | 8 | - | 12 | - | - |
12 | - | 0 | - | - | 14 | - | - | 1 | - | 13 | - | - |