C4graphGraph forms for C4 [ 216, 53 ] = UG(ATD[216,62])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 53 ] = UG(ATD[216,62]).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {52, 55}, {81, 82}, {117, 118}, {164, 172}, {51, 58}, {112, 121}, {4, 14}, {71, 77}, {1, 10}, {195, 200}, {180, 191}, {151, 156}, {64, 75}, {100, 111}, {48, 61}, {147, 158}, {34, 44}, {162, 172}, {197, 202}, {200, 216}, {8, 25}, {78, 95}, {96, 113}, {1, 19}, {79, 93}, {74, 88}, {110, 124}, {5, 22}, {141, 158}, {137, 154}, {39, 52}, {68, 81}, {106, 127}, {7, 17}, {33, 55}, {98, 116}, {76, 85}, {41, 51}, {170, 176}, {107, 113}, {128, 155}, {168, 179}, {162, 185}, {1, 28}, {207, 210}, {130, 159}, {45, 48}, {35, 62}, {104, 117}, {166, 184}, {202, 212}, {171, 181}, {164, 187}, {73, 105}, {83, 115}, {132, 165}, {158, 188}, {13, 41}, {19, 55}, {29, 59}, {135, 161}, {76, 106}, {4, 35}, {26, 61}, {7, 32}, {69, 109}, {75, 99}, {16, 57}, {156, 181}, {155, 178}, {128, 169}, {79, 102}, {89, 114}, {137, 165}, {139, 167}, {23, 58}, {134, 168}, {143, 161}, {1, 46}, {10, 37}, {13, 61}, {75, 123}, {5, 52}, {150, 167}, {146, 163}, {66, 115}, {25, 40}, {92, 109}, {152, 170}, {157, 175}, {78, 125}, {138, 190}, {150, 162}, {28, 41}, {10, 60}, {70, 112}, {79, 119}, {87, 111}, {8, 49}, {31, 37}, {144, 171}, {16, 44}, {24, 37}, {21, 43}, {131, 195}, {19, 82}, {148, 213}, {25, 91}, {134, 197}, {32, 100}, {41, 109}, {146, 215}, {18, 84}, {24, 94}, {55, 127}, {153, 209}, {10, 67}, {59, 114}, {35, 106}, {29, 87}, {57, 115}, {46, 100}, {7, 76}, {3, 79}, {53, 121}, {14, 64}, {140, 194}, {50, 124}, {6, 73}, {26, 85}, {23, 88}, {63, 111}, {146, 194}, {22, 71}, {130, 211}, {45, 127}, {148, 198}, {19, 64}, {11, 95}, {53, 97}, {15, 91}, {12, 88}, {141, 216}, {144, 197}, {39, 113}, {159, 201}, {155, 205}, {128, 214}, {17, 70}, {135, 208}, {46, 118}, {137, 209}, {14, 87}, {153, 192}, {45, 116}, {49, 107}, {32, 123}, {36, 120}, {143, 211}, {52, 104}, {25, 68}, {30, 65}, {30, 124}, {20, 119}, {176, 211}, {9, 109}, {33, 69}, {34, 71}, {171, 206}, {40, 77}, {15, 105}, {49, 87}, {27, 125}, {174, 198}, {188, 212}, {12, 101}, {17, 120}, {47, 69}, {166, 204}, {185, 210}, {37, 73}, {180, 216}, {164, 200}, {50, 94}, {22, 123}, {181, 216}, {161, 204}, {62, 80}, {54, 89}, {11, 123}, {191, 207}, {2, 115}, {176, 193}, {60, 77}, {56, 73}, {24, 106}, {15, 124}, {17, 98}, {4, 112}, {21, 97}, {46, 91}, {51, 70}, {182, 192}, {35, 84}, {53, 66}, {33, 88}, {16, 107}, {43, 80}, {28, 103}, {26, 102}, {47, 83}, {28, 96}, {20, 105}, {31, 97}, {184, 198}, {34, 93}, {189, 194}, {174, 209}, {58, 186}, {5, 132}, {72, 201}, {36, 165}, {44, 174}, {80, 210}, {63, 188}, {3, 133}, {27, 156}, {9, 129}, {74, 194}, {57, 177}, {23, 159}, {18, 154}, {32, 169}, {68, 205}, {59, 178}, {47, 163}, {3, 142}, {6, 139}, {56, 182}, {66, 204}, {7, 136}, {47, 160}, {8, 152}, {13, 157}, {63, 174}, {83, 199}, {80, 197}, {92, 201}, {94, 203}, {42, 188}, {2, 149}, {49, 166}, {38, 177}, {6, 145}, {90, 205}, {42, 178}, {78, 214}, {39, 186}, {43, 182}, {54, 169}, {74, 213}, {85, 202}, {116, 212}, {31, 190}, {42, 136}, {38, 133}, {44, 143}, {104, 203}, {114, 215}, {60, 148}, {102, 206}, {38, 140}, {53, 159}, {40, 130}, {11, 160}, {12, 167}, {108, 199}, {61, 145}, {99, 207}, {14, 163}, {16, 190}, {57, 151}, {2, 173}, {51, 156}, {22, 166}, {113, 193}, {60, 141}, {125, 204}, {117, 198}, {62, 138}, {122, 206}, {4, 177}, {21, 160}, {30, 168}, {56, 142}, {2, 186}, {43, 147}, {27, 163}, {18, 170}, {9, 179}, {33, 154}, {62, 130}, {6, 187}, {20, 169}, {30, 160}, {59, 133}, {39, 153}, {110, 208}, {118, 200}, {8, 183}, {42, 149}, {34, 157}, {21, 213}, {69, 133}, {119, 183}, {121, 185}, {127, 191}, {23, 214}, {5, 199}, {86, 148}, {72, 139}, {82, 145}, {126, 189}, {18, 215}, {65, 132}, {71, 129}, {9, 206}, {3, 203}, {12, 196}, {91, 147}, {101, 173}, {27, 210}, {95, 149}, {110, 164}, {126, 180}, {67, 136}, {98, 175}, {15, 193}, {29, 211}, {89, 151}, {31, 208}, {65, 142}, {20, 196}, {111, 191}, {85, 132}, {83, 128}, {95, 140}, {67, 151}, {96, 180}, {99, 183}, {70, 147}, {75, 158}, {93, 136}, {104, 189}, {120, 173}, {122, 175}, {64, 150}, {103, 177}, {116, 162}, {77, 154}, {90, 141}, {13, 213}, {112, 168}, {29, 196}, {11, 209}, {26, 192}, {84, 142}, {108, 182}, {24, 195}, {86, 138}, {90, 134}, {93, 131}, {102, 184}, {108, 179}, {117, 170}, {48, 208}, {97, 129}, {108, 140}, {74, 171}, {89, 184}, {92, 189}, {121, 152}, {54, 212}, {100, 134}, {40, 203}, {45, 201}, {103, 131}, {36, 193}, {50, 215}, {86, 179}, {119, 146}, {82, 181}, {94, 185}, {96, 135}, {120, 144}, {126, 150}, {38, 207}, {90, 176}, {76, 167}, {99, 143}, {86, 187}, {65, 175}, {67, 172}, {101, 138}, {114, 157}, {58, 202}, {78, 190}, {81, 161}, {92, 173}, {122, 139}, {36, 214}, {50, 192}, {48, 196}, {81, 165}, {54, 195}, {56, 205}, {110, 155}, {103, 144}, {118, 129}, {126, 137}, {63, 199}, {84, 172}, {66, 187}, {72, 178}, {107, 145}, {98, 153}, {105, 149}, {101, 152}, {122, 135}, {68, 186}, {125, 131}, {72, 183} }>;

(II) A more general form is to represent the graph as the orbit of {52, 55} under the group generated by the following permutations:

a: (2, 160)(3, 196)(4, 7)(5, 190)(6, 154)(8, 157)(9, 193)(10, 19)(11, 115)(12, 142)(13, 25)(14, 136)(15, 109)(16, 22)(17, 112)(18, 139)(20, 133)(21, 186)(23, 182)(24, 127)(26, 130)(27, 188)(28, 46)(29, 79)(30, 173)(31, 52)(32, 177)(33, 73)(34, 49)(35, 76)(36, 179)(37, 55)(38, 169)(39, 97)(40, 61)(41, 91)(42, 163)(43, 58)(44, 166)(45, 94)(47, 149)(48, 203)(50, 201)(51, 147)(53, 153)(54, 207)(56, 88)(57, 123)(59, 119)(60, 82)(62, 85)(63, 125)(64, 67)(65, 101)(66, 209)(68, 213)(69, 105)(71, 107)(72, 215)(74, 205)(75, 151)(77, 145)(78, 199)(80, 202)(81, 148)(83, 95)(84, 167)(86, 165)(87, 93)(89, 99)(90, 171)(92, 124)(96, 118)(98, 121)(100, 103)(102, 211)(104, 208)(108, 214)(110, 189)(111, 131)(113, 129)(114, 183)(116, 185)(117, 135)(120, 168)(122, 170)(126, 164)(128, 140)(132, 138)(134, 144)(137, 187)(141, 181)(143, 184)(146, 178)(150, 172)(152, 175)(155, 194)(156, 158)(159, 192)(161, 198)(174, 204)(176, 206)(180, 200)(191, 195)(210, 212)
b: (1, 2, 3)(4, 6, 5)(7, 8, 9)(10, 186, 133)(11, 185, 135)(12, 184, 134)(13, 188, 130)(14, 187, 132)(15, 189, 131)(16, 182, 127)(17, 183, 129)(18, 181, 128)(19, 115, 142)(20, 117, 144)(21, 116, 143)(22, 112, 139)(23, 114, 141)(24, 113, 140)(25, 109, 136)(26, 111, 138)(27, 110, 137)(28, 149, 203)(29, 148, 202)(30, 150, 204)(31, 153, 207)(32, 152, 206)(33, 151, 205)(34, 147, 201)(35, 145, 199)(36, 146, 200)(37, 39, 38)(40, 41, 42)(43, 45, 44)(46, 173, 79)(47, 172, 81)(48, 174, 80)(49, 179, 76)(50, 180, 78)(51, 178, 77)(52, 177, 73)(53, 175, 75)(54, 176, 74)(55, 57, 56)(58, 59, 60)(61, 63, 62)(64, 66, 65)(67, 68, 69)(70, 72, 71)(82, 83, 84)(85, 87, 86)(88, 89, 90)(91, 92, 93)(94, 96, 95)(97, 98, 99)(100, 101, 102)(103, 105, 104)(106, 107, 108)(118, 120, 119)(121, 122, 123)(124, 126, 125)(154, 156, 155)(157, 158, 159)(160, 162, 161)(163, 164, 165)(166, 168, 167)(169, 170, 171)(190, 192, 191)(193, 194, 195)(196, 198, 197)(208, 209, 210)(211, 213, 212)(214, 215, 216)
c: (1, 4, 7)(2, 6, 8)(3, 5, 9)(10, 14, 17)(11, 13, 18)(12, 15, 16)(19, 112, 136)(20, 113, 138)(21, 114, 137)(22, 109, 142)(23, 110, 143)(24, 111, 144)(25, 115, 139)(26, 117, 140)(27, 116, 141)(28, 35, 32)(29, 36, 31)(30, 34, 33)(37, 87, 120)(38, 85, 118)(39, 86, 119)(40, 83, 122)(41, 84, 123)(42, 82, 121)(43, 89, 126)(44, 88, 124)(45, 90, 125)(46, 177, 76)(47, 175, 77)(48, 176, 78)(49, 173, 73)(50, 174, 74)(51, 172, 75)(52, 179, 79)(53, 178, 81)(54, 180, 80)(55, 168, 93)(56, 166, 92)(57, 167, 91)(58, 164, 99)(59, 165, 97)(60, 163, 98)(61, 170, 95)(62, 169, 96)(63, 171, 94)(64, 70, 67)(65, 71, 69)(66, 72, 68)(100, 103, 106)(101, 105, 107)(102, 104, 108)(127, 134, 131)(128, 135, 130)(129, 133, 132)(145, 152, 149)(146, 153, 148)(147, 151, 150)(154, 160, 157)(155, 161, 159)(156, 162, 158)(181, 185, 188)(182, 184, 189)(183, 186, 187)(190, 196, 193)(191, 197, 195)(192, 198, 194)(199, 206, 203)(200, 207, 202)(201, 205, 204)(208, 211, 214)(209, 213, 215)(210, 212, 216)
d: (1, 10)(2, 133)(3, 186)(4, 16)(5, 182)(6, 127)(7, 13)(8, 130)(9, 188)(11, 160)(12, 196)(14, 190)(15, 154)(17, 157)(18, 193)(19, 37)(20, 88)(21, 123)(22, 43)(23, 119)(24, 82)(25, 40)(26, 85)(27, 125)(28, 67)(29, 101)(30, 209)(31, 64)(32, 213)(33, 105)(34, 70)(35, 107)(36, 215)(38, 115)(39, 142)(41, 136)(42, 109)(44, 112)(45, 139)(46, 60)(47, 95)(48, 167)(49, 62)(50, 165)(51, 93)(52, 56)(53, 99)(54, 171)(55, 73)(57, 177)(58, 79)(59, 173)(61, 76)(63, 179)(65, 153)(66, 207)(68, 203)(69, 149)(71, 147)(72, 201)(74, 169)(75, 97)(77, 91)(78, 163)(80, 166)(81, 94)(83, 140)(84, 113)(86, 111)(87, 138)(89, 144)(90, 117)(92, 178)(96, 172)(98, 175)(100, 148)(102, 202)(103, 151)(104, 205)(106, 145)(108, 199)(110, 126)(114, 120)(116, 122)(118, 141)(121, 143)(124, 137)(128, 194)(129, 158)(131, 156)(132, 192)(134, 198)(135, 162)(146, 214)(150, 208)(152, 211)(155, 189)(159, 183)(161, 185)(164, 180)(168, 174)(170, 176)(181, 195)(184, 197)(187, 191)(200, 216)(204, 210)(206, 212)
e: (2, 3)(4, 7)(5, 8)(6, 9)(10, 28)(11, 29)(12, 30)(13, 31)(14, 32)(15, 33)(16, 34)(17, 35)(18, 36)(19, 46)(20, 47)(21, 48)(22, 49)(23, 50)(24, 51)(25, 52)(26, 53)(27, 54)(37, 41)(38, 42)(39, 40)(43, 45)(55, 91)(56, 92)(57, 93)(58, 94)(59, 95)(60, 96)(61, 97)(62, 98)(63, 99)(64, 100)(65, 101)(66, 102)(67, 103)(68, 104)(69, 105)(70, 106)(71, 107)(72, 108)(73, 109)(74, 110)(75, 111)(76, 112)(77, 113)(78, 114)(79, 115)(80, 116)(81, 117)(82, 118)(83, 119)(84, 120)(85, 121)(86, 122)(87, 123)(88, 124)(89, 125)(90, 126)(127, 147)(128, 146)(129, 145)(130, 153)(131, 151)(132, 152)(133, 149)(134, 150)(135, 148)(136, 177)(137, 176)(138, 175)(139, 179)(140, 178)(141, 180)(142, 173)(143, 174)(144, 172)(154, 193)(155, 194)(156, 195)(157, 190)(158, 191)(159, 192)(160, 196)(161, 198)(162, 197)(163, 169)(164, 171)(165, 170)(167, 168)(181, 200)(182, 201)(183, 199)(184, 204)(185, 202)(186, 203)(187, 206)(188, 207)(189, 205)(208, 213)(209, 211)(210, 212)(214, 215)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 53 ]
216
-1 46 28 19 10
-2 115 149 173 186
-3 133 79 203 142
-4 177 35 112 14
-5 22 132 199 52
-6 187 145 73 139
-7 136 17 32 76
-8 25 49 183 152
-9 179 129 206 109
-10 1 67 37 60
-11 209 123 160 95
-12 88 101 167 196
-13 157 213 61 41
-14 4 64 163 87
-15 91 124 105 193
-16 44 57 190 107
-17 70 7 98 120
-18 154 170 215 84
-19 55 1 82 64
-20 169 105 119 196
-21 213 160 97 43
-22 166 123 5 71
-23 88 58 159 214
-24 37 94 106 195
-25 68 91 40 8
-26 102 192 61 85
-27 210 156 125 163
-28 1 103 41 96
-29 211 59 196 87
-30 124 168 160 65
-31 190 37 97 208
-32 100 123 169 7
-33 55 88 154 69
-34 44 157 71 93
-35 4 62 84 106
-36 165 214 193 120
-37 24 73 31 10
-38 133 177 140 207
-39 113 52 153 186
-40 77 25 203 130
-41 13 28 51 109
-42 188 178 136 149
-43 80 147 182 21
-44 143 34 16 174
-45 201 48 116 127
-46 1 100 91 118
-47 69 83 160 163
-48 45 61 196 208
-49 166 8 107 87
-50 124 192 94 215
-51 156 58 70 41
-52 55 5 104 39
-53 66 121 159 97
-54 89 212 169 195
-55 33 127 19 52
-56 182 73 205 142
-57 177 16 115 151
-58 23 202 51 186
-59 133 178 114 29
-60 77 148 141 10
-61 13 145 26 48
-62 35 80 138 130
-63 111 188 199 174
-64 14 150 19 75
-65 132 30 142 175
-66 187 115 204 53
-67 136 172 151 10
-68 25 81 205 186
-69 33 133 47 109
-70 112 147 17 51
-71 22 77 34 129
-72 178 201 139 183
-73 56 37 6 105
-74 88 213 171 194
-75 99 123 158 64
-76 167 7 106 85
-77 154 60 71 40
-78 190 125 214 95
-79 3 102 93 119
-80 210 62 43 197
-81 165 68 82 161
-82 145 81 181 19
-83 199 47 115 128
-84 35 18 172 142
-85 132 26 202 76
-86 187 179 148 138
-87 111 14 49 29
-88 33 12 23 74
-89 114 151 184 54
-90 176 134 205 141
-91 46 25 15 147
-92 189 201 173 109
-93 34 79 136 131
-94 24 203 50 185
-95 11 78 149 140
-96 113 135 180 28
-97 129 31 53 21
-98 17 116 153 175
-99 143 183 75 207
-100 111 46 134 32
-101 12 138 173 152
-102 79 26 184 206
-103 144 177 28 131
-104 189 203 117 52
-105 15 149 73 20
-106 24 35 127 76
-107 145 113 16 49
-108 199 179 182 140
-109 69 92 41 9
-110 155 124 164 208
-111 100 191 63 87
-112 121 168 4 70
-113 39 193 96 107
-114 89 157 59 215
-115 66 2 57 83
-116 45 212 162 98
-117 198 104 170 118
-118 46 200 117 129
-119 79 146 183 20
-120 144 36 17 173
-121 112 53 152 185
-122 135 139 206 175
-123 11 22 75 32
-124 110 15 50 30
-125 78 27 204 131
-126 189 180 137 150
-127 55 45 191 106
-128 155 169 214 83
-129 71 118 9 97
-130 211 159 40 62
-131 103 125 93 195
-132 165 5 85 65
-133 3 69 59 38
-134 100 90 168 197
-135 122 161 96 208
-136 67 93 7 42
-137 154 165 209 126
-138 101 190 62 86
-139 122 167 6 72
-140 38 95 194 108
-141 90 158 60 216
-142 56 3 84 65
-143 44 99 211 161
-144 103 171 120 197
-145 82 6 61 107
-146 215 194 119 163
-147 91 70 158 43
-148 198 213 60 86
-149 2 105 95 42
-150 167 126 162 64
-151 67 89 57 156
-152 121 101 170 8
-153 209 192 39 98
-154 33 77 137 18
-155 110 178 128 205
-156 27 181 51 151
-157 34 13 114 175
-158 188 147 75 141
-159 23 201 53 130
-160 11 47 30 21
-161 143 135 81 204
-162 116 150 172 185
-163 14 47 146 27
-164 110 187 200 172
-165 132 36 81 137
-166 22 49 204 184
-167 12 139 150 76
-168 112 134 179 30
-169 128 20 32 54
-170 176 18 117 152
-171 144 181 74 206
-172 67 84 162 164
-173 2 101 92 120
-174 44 198 209 63
-175 122 157 65 98
-176 90 211 170 193
-177 57 4 103 38
-178 155 59 72 42
-179 168 9 86 108
-180 191 126 216 96
-181 156 82 171 216
-182 56 192 108 43
-183 99 72 8 119
-184 198 89 166 102
-185 121 210 94 162
-186 2 68 58 39
-187 66 6 86 164
-188 212 158 63 42
-189 92 104 126 194
-190 78 16 138 31
-191 111 180 127 207
-192 26 50 182 153
-193 176 36 113 15
-194 189 146 74 140
-195 24 200 54 131
-196 12 48 29 20
-197 144 134 80 202
-198 148 117 184 174
-199 5 83 63 108
-200 216 118 195 164
-201 45 92 159 72
-202 58 212 85 197
-203 3 104 94 40
-204 66 166 125 161
-205 56 155 68 90
-206 122 102 171 9
-207 99 210 191 38
-208 110 135 48 31
-209 11 137 174 153
-210 80 27 185 207
-211 143 176 29 130
-212 188 202 116 54
-213 13 148 74 21
-214 23 78 36 128
-215 146 114 50 18
-216 200 180 181 141
0

**************