C4graphGraph forms for C4 [ 216, 64 ] = UG(ATD[216,117])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 64 ] = UG(ATD[216,117]).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {12, 15}, {160, 163}, {120, 123}, {124, 127}, {1, 4}, {185, 188}, {83, 86}, {51, 54}, {41, 44}, {89, 92}, {105, 108}, {153, 156}, {1, 7}, {200, 206}, {177, 183}, {80, 86}, {18, 21}, {178, 181}, {17, 25}, {181, 189}, {70, 78}, {51, 59}, {4, 13}, {194, 203}, {39, 45}, {198, 204}, {181, 191}, {131, 137}, {1, 10}, {196, 207}, {160, 171}, {101, 110}, {113, 122}, {117, 126}, {133, 142}, {161, 173}, {71, 74}, {199, 202}, {192, 205}, {99, 110}, {149, 155}, {195, 205}, {134, 137}, {1, 16}, {197, 212}, {107, 122}, {109, 124}, {135, 150}, {4, 22}, {165, 183}, {162, 176}, {38, 52}, {13, 31}, {11, 25}, {130, 144}, {132, 150}, {193, 210}, {196, 215}, {7, 19}, {193, 213}, {133, 145}, {143, 155}, {195, 214}, {197, 208}, {10, 28}, {162, 180}, {103, 113}, {138, 156}, {34, 53}, {70, 81}, {132, 147}, {6, 30}, {192, 216}, {201, 208}, {105, 115}, {201, 211}, {66, 89}, {173, 182}, {72, 84}, {170, 182}, {75, 87}, {132, 152}, {6, 27}, {10, 23}, {7, 25}, {135, 153}, {35, 60}, {200, 215}, {42, 53}, {104, 119}, {16, 49}, {76, 109}, {29, 60}, {28, 61}, {22, 55}, {7, 37}, {90, 120}, {9, 42}, {71, 100}, {25, 58}, {24, 59}, {13, 46}, {154, 185}, {131, 166}, {153, 188}, {4, 34}, {30, 56}, {93, 123}, {19, 52}, {64, 103}, {24, 63}, {90, 114}, {10, 35}, {150, 191}, {151, 190}, {68, 111}, {72, 99}, {88, 115}, {9, 36}, {29, 48}, {94, 115}, {154, 183}, {26, 52}, {134, 168}, {149, 187}, {144, 191}, {14, 62}, {88, 106}, {91, 105}, {95, 109}, {143, 189}, {5, 49}, {3, 54}, {18, 39}, {14, 59}, {15, 57}, {18, 36}, {136, 190}, {67, 116}, {138, 189}, {16, 40}, {19, 43}, {8, 49}, {64, 121}, {24, 33}, {22, 47}, {130, 185}, {133, 185}, {29, 32}, {3, 60}, {12, 51}, {136, 200}, {9, 72}, {62, 127}, {55, 118}, {35, 98}, {48, 114}, {38, 101}, {21, 81}, {46, 106}, {37, 97}, {31, 91}, {28, 88}, {48, 117}, {3, 69}, {35, 101}, {20, 83}, {55, 112}, {137, 193}, {155, 211}, {58, 115}, {155, 210}, {61, 116}, {41, 99}, {156, 214}, {142, 196}, {61, 118}, {40, 100}, {3, 78}, {56, 117}, {33, 108}, {13, 67}, {62, 112}, {50, 124}, {23, 89}, {137, 198}, {142, 193}, {14, 94}, {154, 202}, {148, 196}, {151, 199}, {32, 113}, {22, 68}, {156, 206}, {57, 107}, {50, 97}, {14, 90}, {63, 107}, {59, 111}, {32, 116}, {26, 78}, {16, 70}, {50, 100}, {148, 194}, {32, 119}, {47, 120}, {144, 200}, {20, 77}, {52, 109}, {26, 67}, {19, 73}, {36, 126}, {30, 68}, {152, 195}, {2, 94}, {152, 198}, {31, 64}, {150, 201}, {28, 124}, {171, 203}, {31, 127}, {36, 69}, {179, 210}, {174, 207}, {12, 110}, {63, 93}, {41, 75}, {2, 97}, {187, 216}, {180, 215}, {175, 204}, {2, 102}, {56, 93}, {176, 213}, {170, 207}, {9, 111}, {178, 212}, {15, 104}, {172, 203}, {41, 78}, {26, 125}, {164, 204}, {188, 212}, {176, 216}, {23, 125}, {39, 77}, {37, 79}, {5, 110}, {190, 213}, {39, 75}, {43, 71}, {163, 206}, {188, 209}, {34, 76}, {49, 95}, {190, 209}, {21, 101}, {182, 198}, {165, 213}, {23, 103}, {5, 116}, {189, 204}, {182, 199}, {15, 125}, {53, 71}, {48, 66}, {46, 92}, {163, 208}, {11, 127}, {191, 203}, {187, 207}, {38, 82}, {20, 97}, {183, 194}, {50, 68}, {30, 105}, {24, 96}, {184, 192}, {27, 99}, {12, 117}, {186, 195}, {56, 65}, {40, 82}, {172, 214}, {171, 209}, {169, 211}, {42, 80}, {27, 96}, {2, 126}, {164, 216}, {34, 94}, {27, 102}, {29, 96}, {17, 111}, {180, 202}, {179, 205}, {173, 211}, {51, 77}, {43, 85}, {62, 65}, {186, 197}, {184, 199}, {177, 206}, {175, 208}, {174, 209}, {169, 214}, {17, 145}, {33, 162}, {8, 140}, {11, 141}, {6, 129}, {45, 167}, {6, 141}, {47, 161}, {21, 132}, {20, 135}, {86, 197}, {86, 194}, {11, 158}, {45, 186}, {87, 192}, {57, 160}, {5, 159}, {8, 146}, {61, 160}, {18, 140}, {54, 168}, {87, 201}, {8, 168}, {63, 159}, {38, 134}, {43, 136}, {54, 147}, {37, 130}, {58, 157}, {42, 130}, {123, 210}, {55, 157}, {40, 133}, {122, 215}, {46, 128}, {122, 212}, {47, 158}, {58, 139}, {123, 202}, {44, 152}, {121, 205}, {17, 167}, {53, 141}, {44, 149}, {57, 128}, {60, 128}, {45, 144}, {44, 146}, {33, 158}, {77, 141}, {75, 138}, {102, 167}, {83, 145}, {95, 157}, {80, 147}, {112, 179}, {69, 129}, {98, 166}, {118, 178}, {70, 131}, {82, 151}, {106, 175}, {89, 159}, {106, 172}, {108, 170}, {119, 177}, {73, 142}, {82, 149}, {67, 139}, {104, 162}, {121, 181}, {107, 165}, {72, 135}, {85, 154}, {87, 134}, {74, 153}, {85, 131}, {114, 165}, {79, 151}, {114, 170}, {121, 161}, {119, 174}, {69, 159}, {80, 138}, {73, 146}, {84, 143}, {83, 136}, {79, 148}, {90, 129}, {120, 164}, {76, 145}, {113, 172}, {74, 148}, {81, 143}, {95, 128}, {108, 179}, {112, 175}, {118, 169}, {126, 158}, {64, 163}, {66, 171}, {81, 184}, {79, 166}, {98, 139}, {104, 129}, {76, 166}, {65, 173}, {96, 140}, {74, 167}, {92, 177}, {84, 186}, {85, 187}, {92, 178}, {100, 139}, {98, 146}, {65, 176}, {73, 184}, {125, 140}, {91, 169}, {93, 174}, {102, 147}, {66, 180}, {88, 161}, {103, 157}, {84, 168}, {91, 164} }>;

(II) A more general form is to represent the graph as the orbit of {12, 15} under the group generated by the following permutations:

a: (2, 111)(3, 140)(4, 7)(5, 101)(6, 77)(8, 60)(9, 126)(10, 16)(11, 53)(12, 99)(13, 19)(14, 167)(15, 41)(17, 94)(18, 69)(20, 30)(21, 159)(22, 37)(23, 70)(24, 147)(25, 34)(27, 51)(28, 40)(29, 168)(31, 43)(32, 134)(33, 80)(35, 49)(38, 116)(39, 129)(42, 158)(44, 57)(45, 90)(46, 73)(47, 130)(48, 84)(52, 67)(54, 96)(55, 79)(56, 135)(58, 76)(59, 102)(61, 82)(62, 74)(63, 132)(64, 85)(65, 153)(66, 143)(68, 97)(71, 127)(72, 117)(75, 104)(78, 125)(81, 89)(83, 105)(86, 108)(87, 119)(88, 133)(91, 136)(92, 184)(93, 150)(95, 98)(100, 124)(103, 131)(106, 142)(107, 152)(109, 139)(112, 148)(113, 137)(114, 186)(115, 145)(118, 151)(120, 144)(121, 154)(122, 198)(123, 191)(128, 146)(138, 162)(149, 160)(155, 171)(156, 176)(157, 166)(161, 185)(163, 187)(164, 200)(165, 195)(169, 190)(170, 197)(172, 193)(173, 188)(174, 201)(175, 196)(177, 192)(178, 199)(179, 194)(180, 189)(181, 202)(182, 212)(183, 205)(203, 210)(204, 215)(206, 216)(207, 208)(209, 211)(213, 214)
b: (2, 3)(4, 10)(5, 11)(6, 12)(7, 16)(8, 17)(9, 18)(13, 28)(14, 29)(15, 30)(19, 40)(20, 41)(21, 42)(22, 23)(25, 49)(26, 50)(27, 51)(31, 61)(32, 62)(33, 63)(34, 35)(37, 70)(38, 71)(39, 72)(43, 82)(44, 83)(45, 84)(46, 88)(47, 89)(48, 90)(52, 100)(53, 101)(54, 102)(55, 103)(56, 104)(57, 105)(58, 95)(59, 96)(60, 94)(64, 118)(65, 119)(66, 120)(67, 124)(68, 125)(69, 126)(73, 133)(74, 134)(75, 135)(76, 98)(77, 99)(78, 97)(79, 131)(80, 132)(81, 130)(85, 151)(86, 152)(87, 153)(91, 160)(92, 161)(93, 162)(107, 108)(109, 139)(110, 141)(111, 140)(112, 113)(115, 128)(116, 127)(117, 129)(121, 178)(122, 179)(123, 180)(136, 149)(137, 148)(138, 150)(143, 144)(145, 146)(154, 199)(155, 200)(156, 201)(158, 159)(163, 169)(164, 171)(165, 170)(167, 168)(172, 175)(173, 177)(174, 176)(182, 183)(184, 185)(187, 190)(188, 192)(189, 191)(193, 196)(194, 198)(195, 197)(203, 204)(205, 212)(206, 211)(207, 213)(208, 214)(209, 216)(210, 215)
c: (1, 2, 3)(4, 126, 60)(5, 124, 59)(6, 125, 58)(7, 102, 78)(8, 100, 77)(9, 101, 76)(10, 94, 69)(11, 96, 67)(12, 95, 68)(13, 158, 29)(14, 159, 28)(15, 157, 30)(16, 97, 54)(17, 99, 52)(18, 98, 53)(19, 167, 41)(20, 168, 40)(21, 166, 42)(22, 117, 128)(23, 115, 129)(24, 116, 127)(25, 27, 26)(31, 33, 32)(34, 36, 35)(37, 147, 70)(38, 145, 72)(39, 146, 71)(43, 45, 44)(46, 47, 48)(49, 50, 51)(55, 56, 57)(61, 62, 63)(64, 108, 119)(65, 107, 118)(66, 106, 120)(73, 74, 75)(79, 80, 81)(82, 83, 84)(85, 144, 152)(86, 143, 151)(87, 142, 153)(88, 90, 89)(91, 162, 113)(92, 161, 114)(93, 160, 112)(103, 105, 104)(109, 111, 110)(121, 170, 177)(122, 169, 176)(123, 171, 175)(130, 132, 131)(133, 135, 134)(136, 186, 149)(137, 185, 150)(138, 184, 148)(139, 141, 140)(154, 191, 198)(155, 190, 197)(156, 192, 196)(163, 179, 174)(164, 180, 172)(165, 178, 173)(181, 182, 183)(187, 200, 195)(188, 201, 193)(189, 199, 194)(202, 203, 204)(205, 207, 206)(208, 210, 209)(211, 213, 212)(214, 216, 215)
d: (1, 4)(2, 60)(3, 126)(5, 111)(6, 140)(7, 13)(8, 30)(9, 159)(10, 34)(11, 26)(12, 51)(14, 101)(15, 77)(16, 22)(17, 116)(18, 129)(19, 31)(20, 57)(21, 90)(23, 53)(24, 99)(25, 67)(27, 96)(28, 76)(29, 102)(32, 167)(33, 41)(35, 94)(36, 69)(37, 46)(38, 62)(39, 104)(40, 55)(42, 89)(43, 64)(44, 108)(45, 119)(47, 70)(48, 147)(49, 68)(50, 95)(52, 127)(54, 117)(56, 168)(58, 139)(59, 110)(61, 145)(63, 72)(65, 134)(66, 80)(71, 103)(73, 91)(74, 113)(75, 162)(78, 158)(79, 106)(81, 120)(82, 112)(83, 160)(84, 93)(85, 121)(86, 171)(87, 176)(88, 166)(92, 130)(97, 128)(98, 115)(100, 157)(105, 146)(107, 135)(109, 124)(114, 132)(118, 133)(122, 153)(123, 143)(125, 141)(131, 161)(136, 163)(137, 173)(138, 180)(142, 169)(144, 177)(148, 172)(149, 179)(150, 165)(151, 175)(152, 170)(154, 181)(155, 210)(156, 215)(164, 184)(174, 186)(178, 185)(182, 198)(183, 191)(187, 205)(188, 212)(189, 202)(190, 208)(192, 216)(193, 211)(194, 203)(195, 207)(196, 214)(197, 209)(199, 204)(200, 206)(201, 213)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 64 ]
216
-1 4 16 7 10
-2 102 126 94 97
-3 78 69 60 54
-4 22 1 34 13
-5 110 49 159 116
-6 27 30 129 141
-7 1 25 37 19
-8 146 168 49 140
-9 111 36 72 42
-10 1 23 35 28
-11 25 158 127 141
-12 110 15 51 117
-13 67 46 4 31
-14 90 59 94 62
-15 12 57 125 104
-16 1 70 49 40
-17 111 145 167 25
-18 36 39 140 21
-19 7 73 52 43
-20 77 135 83 97
-21 132 101 81 18
-22 55 68 47 4
-23 89 103 125 10
-24 33 59 63 96
-25 11 58 17 7
-26 67 78 125 52
-27 99 102 6 96
-28 88 124 61 10
-29 48 60 96 32
-30 56 68 6 105
-31 13 91 127 64
-32 113 116 29 119
-33 24 158 162 108
-34 4 94 53 76
-35 101 60 10 98
-36 69 126 18 9
-37 79 7 97 130
-38 101 134 82 52
-39 77 45 18 75
-40 100 133 16 82
-41 44 99 78 75
-42 80 9 53 130
-43 136 71 19 85
-44 146 149 41 152
-45 144 167 39 186
-46 13 92 106 128
-47 22 158 161 120
-48 66 114 29 117
-49 5 16 95 8
-50 100 68 124 97
-51 77 12 59 54
-52 26 38 19 109
-53 34 71 42 141
-54 3 168 147 51
-55 22 112 157 118
-56 93 117 30 65
-57 15 160 128 107
-58 25 157 115 139
-59 111 24 14 51
-60 35 3 29 128
-61 28 116 160 118
-62 112 14 127 65
-63 24 93 159 107
-64 121 103 31 163
-65 176 56 62 173
-66 89 48 180 171
-67 13 26 116 139
-68 22 111 50 30
-69 3 36 159 129
-70 78 81 16 131
-71 100 74 53 43
-72 99 135 84 9
-73 146 19 184 142
-74 167 71 148 153
-75 39 138 41 87
-76 34 166 145 109
-77 39 51 20 141
-78 3 26 70 41
-79 166 37 148 151
-80 147 138 42 86
-81 143 70 184 21
-82 38 149 40 151
-83 145 136 20 86
-84 143 168 72 186
-85 154 187 43 131
-86 80 83 194 197
-87 134 201 192 75
-88 115 28 106 161
-89 66 23 92 159
-90 14 114 129 120
-91 169 105 31 164
-92 89 177 46 178
-93 56 123 63 174
-94 34 2 14 115
-95 157 49 128 109
-96 24 27 29 140
-97 2 37 50 20
-98 166 35 146 139
-99 110 27 72 41
-100 71 50 40 139
-101 110 35 38 21
-102 2 167 147 27
-103 23 113 157 64
-104 15 129 162 119
-105 91 115 30 108
-106 88 46 172 175
-107 165 122 57 63
-108 33 179 170 105
-109 124 95 52 76
-110 99 12 101 5
-111 68 59 17 9
-112 55 179 62 175
-113 122 103 172 32
-114 165 90 48 170
-115 88 58 94 105
-116 67 5 61 32
-117 12 56 48 126
-118 55 178 169 61
-119 177 104 174 32
-120 90 123 47 164
-121 181 161 205 64
-122 113 212 215 107
-123 210 202 93 120
-124 28 50 127 109
-125 23 15 26 140
-126 2 36 158 117
-127 11 124 62 31
-128 46 57 60 95
-129 90 69 104 6
-130 144 37 42 185
-131 166 70 137 85
-132 147 150 152 21
-133 145 40 185 142
-134 168 38 137 87
-135 72 150 20 153
-136 200 190 83 43
-137 198 134 193 131
-138 156 189 80 75
-139 67 100 58 98
-140 125 18 8 96
-141 11 77 6 53
-142 133 193 73 196
-143 155 189 81 84
-144 45 200 191 130
-145 133 17 83 76
-146 44 73 8 98
-147 132 80 102 54
-148 79 194 74 196
-149 44 187 155 82
-150 132 135 201 191
-151 199 79 190 82
-152 44 132 198 195
-153 188 156 135 74
-154 202 183 85 185
-155 143 210 211 149
-156 214 138 206 153
-157 55 58 103 95
-158 11 33 47 126
-159 89 69 5 63
-160 57 61 171 163
-161 88 121 47 173
-162 33 176 180 104
-163 160 206 64 208
-164 91 204 216 120
-165 114 213 183 107
-166 79 76 98 131
-167 45 102 17 74
-168 134 84 8 54
-169 211 91 214 118
-170 114 182 108 207
-171 66 209 203 160
-172 113 203 214 106
-173 211 182 161 65
-174 209 93 119 207
-175 112 204 106 208
-176 213 216 162 65
-177 92 183 206 119
-178 212 92 181 118
-179 210 112 205 108
-180 66 202 215 162
-181 121 178 189 191
-182 198 199 170 173
-183 154 165 177 194
-184 199 81 192 73
-185 154 133 188 130
-186 45 84 195 197
-187 149 216 85 207
-188 209 212 185 153
-189 143 181 138 204
-190 209 136 213 151
-191 144 181 203 150
-192 205 216 184 87
-193 210 213 137 142
-194 148 203 183 86
-195 214 205 152 186
-196 148 215 207 142
-197 212 86 186 208
-198 137 182 204 152
-199 202 182 151 184
-200 144 136 215 206
-201 211 150 87 208
-202 154 199 123 180
-203 191 171 172 194
-204 198 189 164 175
-205 121 179 192 195
-206 177 156 200 163
-207 187 170 174 196
-208 201 163 175 197
-209 188 190 171 174
-210 155 123 179 193
-211 155 201 169 173
-212 122 188 178 197
-213 165 176 190 193
-214 156 169 172 195
-215 122 200 180 196
-216 176 187 192 164
0

**************