[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 216, 64 ]. See Glossary for some
detail.
UG(ATD[216, 117]) = UG(ATD[216, 118]) = UG(ATD[216, 119])
= MG(Rmap(216,117) { 12, 24| 6}_ 24) = DG(Rmap(216,117) { 12, 24| 6}_ 24) =
MG(Rmap(216,119) { 12, 24| 6}_ 24)
= DG(Rmap(216,119) { 12, 24| 6}_ 24) = DG(Rmap(216,124) { 24, 12| 6}_ 24) =
DG(Rmap(216,127) { 24, 12| 6}_ 24)
= BGCG(AMC( 12, 3, [ 0. 1: 2. 2]); K1;6) = AT[216, 24]
Cyclic coverings
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 | 0 | - | 0 4 | - | - |
| 2 | - | - | - | - | 12 | 0 | - | - | 0 4 |
| 3 | - | - | - | 12 | - | 12 | - | 0 20 | - |
| 4 | 0 | - | 12 | - | - | - | 9 | 9 | - |
| 5 | 0 | 12 | - | - | - | - | 1 | - | 21 |
| 6 | - | 0 | 12 | - | - | - | - | 17 | 1 |
| 7 | 0 20 | - | - | 15 | 23 | - | - | - | - |
| 8 | - | - | 0 4 | 15 | - | 7 | - | - | - |
| 9 | - | 0 20 | - | - | 3 | 23 | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | 0 | 0 10 | - | 0 | - | - | - |
| 2 | - | - | 12 | - | - | - | 0 10 | 0 | - |
| 3 | 0 | 12 | - | 1 | - | - | 1 | - | - |
| 4 | 0 14 | - | 23 | - | - | 3 | - | - | - |
| 5 | - | - | - | - | - | 15 | - | 13 | 0 10 |
| 6 | 0 | - | - | 21 | 9 | - | - | - | 10 |
| 7 | - | 0 14 | 23 | - | - | - | - | 15 | - |
| 8 | - | 0 | - | - | 11 | - | 9 | - | 8 |
| 9 | - | - | - | - | 0 14 | 14 | - | 16 | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 23 | - | 0 | 0 | - | - | - | - | - |
| 2 | - | - | - | 12 | - | - | 0 | 0 | 0 |
| 3 | 0 | - | - | 15 | 13 | - | 1 | - | - |
| 4 | 0 | 12 | 9 | - | - | - | - | 9 | - |
| 5 | - | - | 11 | - | - | 14 | 15 | 13 | - |
| 6 | - | - | - | - | 10 | 1 23 | - | 8 | - |
| 7 | - | 0 | 23 | - | 9 | - | - | - | 9 |
| 8 | - | 0 | - | 15 | 11 | 16 | - | - | - |
| 9 | - | 0 | - | - | - | - | 15 | - | 1 23 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | - | - | - | 0 | - | 0 | 0 | - | 0 |
| 2 | - | - | - | - | 0 | 12 | - | 0 | 4 |
| 3 | - | - | - | 12 | 12 | - | 20 | 4 | - |
| 4 | 0 | - | 12 | - | - | - | - | 1 | 21 |
| 5 | - | 0 | 12 | - | - | - | 5 | - | 13 |
| 6 | 0 | 12 | - | - | - | - | 9 | 9 | - |
| 7 | 0 | - | 4 | - | 19 | 15 | - | - | - |
| 8 | - | 0 | 20 | 23 | - | 15 | - | - | - |
| 9 | 0 | 20 | - | 3 | 11 | - | - | - | - |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 23 | - | 0 | 0 | - | - | - | - | - |
| 2 | - | - | - | 12 | - | - | - | 0 | 0 22 |
| 3 | 0 | - | - | - | 11 | 11 | - | - | 23 |
| 4 | 0 | 12 | - | - | 15 | - | 0 | - | - |
| 5 | - | - | 13 | 9 | 11 13 | - | - | - | - |
| 6 | - | - | 13 | - | - | - | 8 10 | 23 | - |
| 7 | - | - | - | 0 | - | 14 16 | - | 16 | - |
| 8 | - | 0 | - | - | - | 1 | 8 | - | 9 |
| 9 | - | 0 2 | 1 | - | - | - | - | 15 | - |