[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 216, 69 ] =
PL(ATD[6,1]#DCyc[9]).
(I) Following is a form readable by MAGMA:
g:=Graph<216|{ {107, 110}, {103, 109}, {98, 109}, {107, 123}, {98, 115}, {103,
117}, {104, 122}, {96, 121}, {82, 113}, {88, 124}, {80, 117}, {68, 109}, {71,
109}, {81, 122}, {84, 120}, {66, 111}, {90, 119}, {81, 126}, {91, 116}, {86,
121}, {64, 114}, {76, 122}, {77, 117}, {78, 116}, {66, 121}, {79, 116}, {64,
127}, {58, 120}, {49, 114}, {57, 125}, {58, 126}, {63, 123}, {59, 124}, {60,
123}, {51, 121}, {36, 111}, {48, 123}, {37, 110}, {63, 114}, {49, 127}, {35,
113}, {60, 110}, {32, 115}, {37, 118}, {35, 112}, {43, 126}, {39, 112}, {34,
120}, {38, 124}, {37, 127}, {33, 125}, {40, 118}, {22, 116}, {18, 119}, {23,
113}, {26, 124}, {21, 125}, {5, 111}, {28, 118}, {27, 112}, {27, 119}, {31,
114}, {22, 120}, {1, 113}, {14, 127}, {9, 122}, {11, 126}, {24, 111}, {25, 110},
{14, 118}, {9, 115}, {12, 119}, {15, 115}, {8, 117}, {2, 125}, {15, 112}, {8,
136}, {21, 149}, {74, 203}, {82, 211}, {3, 129}, {86, 212}, {18, 144}, {15,
141}, {70, 197}, {76, 207}, {18, 151}, {11, 141}, {54, 176}, {14, 136}, {72,
206}, {19, 148}, {53, 178}, {52, 179}, {22, 145}, {4, 140}, {27, 146}, {43,
162}, {1, 139}, {47, 165}, {12, 134}, {6, 140}, {67, 201}, {68, 206}, {31, 148},
{38, 173}, {33, 170}, {4, 136}, {51, 191}, {17, 157}, {16, 156}, {2, 143}, {89,
212}, {74, 199}, {76, 193}, {1, 143}, {69, 203}, {36, 171}, {92, 211}, {77,
194}, {4, 148}, {55, 167}, {45, 189}, {39, 183}, {32, 176}, {66, 210}, {69,
213}, {84, 196}, {40, 185}, {48, 161}, {32, 178}, {85, 199}, {80, 194}, {41,
186}, {83, 192}, {13, 153}, {30, 138}, {57, 173}, {64, 212}, {26, 143}, {41,
188}, {59, 174}, {10, 156}, {87, 193}, {52, 162}, {50, 164}, {35, 181}, {28,
138}, {24, 142}, {16, 135}, {52, 163}, {44, 187}, {61, 170}, {2, 154}, {87,
207}, {28, 133}, {94, 199}, {86, 207}, {62, 167}, {74, 211}, {82, 203}, {25,
131}, {31, 133}, {1, 154}, {53, 174}, {50, 169}, {29, 134}, {12, 151}, {11,
151}, {17, 141}, {43, 182}, {50, 175}, {56, 165}, {78, 211}, {41, 183}, {95,
193}, {47, 177}, {83, 205}, {75, 212}, {19, 179}, {42, 138}, {36, 132}, {6,
167}, {100, 197}, {50, 147}, {29, 188}, {20, 181}, {11, 170}, {23, 181}, {4,
167}, {42, 137}, {20, 176}, {52, 144}, {46, 139}, {13, 171}, {51, 149}, {20,
178}, {3, 164}, {54, 145}, {62, 153}, {36, 140}, {106, 194}, {58, 146}, {16,
185}, {103, 206}, {45, 132}, {26, 176}, {49, 155}, {44, 134}, {40, 130}, {29,
183}, {8, 163}, {21, 190}, {56, 148}, {17, 188}, {97, 204}, {53, 152}, {46,
131}, {40, 133}, {7, 169}, {46, 128}, {35, 141}, {53, 154}, {100, 203}, {96,
207}, {48, 128}, {56, 136}, {23, 166}, {102, 215}, {39, 150}, {98, 208}, {7,
180}, {24, 171}, {14, 189}, {10, 185}, {24, 172}, {108, 216}, {51, 135}, {42,
158}, {8, 189}, {9, 191}, {99, 213}, {55, 129}, {47, 153}, {23, 161}, {56, 142},
{61, 139}, {60, 132}, {13, 180}, {54, 143}, {43, 146}, {38, 159}, {18, 168},
{41, 147}, {34, 152}, {63, 133}, {3, 184}, {17, 170}, {5, 184}, {59, 134}, {25,
166}, {10, 202}, {102, 166}, {93, 157}, {9, 200}, {7, 197}, {84, 150}, {99,
160}, {101, 166}, {7, 195}, {104, 172}, {103, 163}, {21, 208}, {89, 156}, {65,
132}, {66, 135}, {6, 192}, {81, 151}, {15, 200}, {106, 173}, {102, 161}, {22,
209}, {70, 129}, {78, 137}, {90, 146}, {96, 168}, {91, 147}, {3, 202}, {30,
215}, {10, 195}, {71, 142}, {75, 130}, {84, 157}, {2, 200}, {91, 145}, {6, 205},
{20, 216}, {105, 165}, {29, 209}, {65, 140}, {100, 169}, {97, 172}, {13, 195},
{87, 153}, {85, 155}, {5, 202}, {90, 149}, {97, 177}, {16, 193}, {107, 186},
{19, 194}, {74, 155}, {80, 130}, {101, 183}, {26, 201}, {31, 204}, {67, 144},
{30, 202}, {94, 138}, {86, 130}, {69, 145}, {73, 157}, {79, 154}, {92, 137}, {5,
210}, {105, 190}, {104, 191}, {71, 159}, {105, 177}, {99, 187}, {95, 135}, {25,
192}, {108, 181}, {106, 179}, {99, 186}, {82, 139}, {28, 199}, {67, 152}, {69,
158}, {64, 156}, {97, 189}, {68, 152}, {12, 209}, {94, 131}, {93, 128}, {92,
129}, {30, 195}, {27, 198}, {94, 128}, {19, 204}, {73, 150}, {39, 198}, {93,
188}, {85, 180}, {55, 214}, {45, 204}, {67, 162}, {71, 165}, {54, 213}, {72,
172}, {37, 192}, {108, 137}, {90, 191}, {61, 216}, {65, 164}, {72, 173}, {77,
168}, {49, 215}, {104, 142}, {101, 131}, {70, 160}, {73, 175}, {33, 198}, {44,
196}, {62, 214}, {65, 169}, {73, 160}, {95, 182}, {80, 185}, {60, 214}, {89,
179}, {68, 174}, {34, 201}, {62, 210}, {85, 184}, {88, 182}, {38, 201}, {81,
190}, {32, 208}, {96, 144}, {88, 168}, {33, 208}, {57, 200}, {55, 197}, {108,
158}, {63, 205}, {76, 190}, {34, 209}, {101, 150}, {75, 184}, {83, 160}, {79,
187}, {91, 175}, {78, 187}, {106, 159}, {46, 216}, {88, 174}, {57, 206}, {92,
164}, {107, 147}, {44, 213}, {72, 177}, {89, 163}, {100, 158}, {45, 214}, {61,
198}, {77, 182}, {70, 186}, {105, 149}, {93, 161}, {87, 171}, {83, 175}, {42,
215}, {102, 155}, {98, 159}, {95, 162}, {48, 205}, {47, 210}, {79, 178}, {58,
196}, {59, 196}, {75, 180} }>;
(II) A more general form is to represent the graph as the orbit of {107, 110}
under the group generated by the following permutations:
a: (1, 2, 57, 72, 97, 45, 60, 107, 41, 29, 12, 18, 96, 86, 75, 85, 74, 82)(3,
102, 69, 61, 53, 9, 106, 47, 14, 65, 48, 99, 39, 34, 81, 77, 66, 64, 7, 94, 78,
35, 26, 21, 103, 24, 31, 55, 25, 91, 17, 59, 90, 52, 87, 40)(4, 6, 83, 73, 84,
58, 43, 95, 16, 10, 30, 42, 108, 20, 32, 98, 71, 56)(5, 49, 100, 46, 79, 15, 38,
105, 8, 36, 63, 70, 101, 22, 11, 88, 51, 89, 13, 28, 92, 23, 54, 33, 68, 104,
19, 62, 37, 50, 93, 44, 27, 67, 76, 80)(109, 142, 148, 167, 192, 175, 157, 196,
146, 162, 193, 185, 202, 215, 158, 216, 178, 115, 159, 165, 136, 140, 205, 160,
150, 120, 126, 182, 135, 156, 195, 138, 137, 181, 176, 208)(110, 147, 188, 134,
119, 144, 207, 130, 184, 155, 203, 139, 154, 200, 173, 177, 189, 132, 123, 186,
183, 209, 151, 168, 121, 212, 180, 199, 211, 113, 143, 125, 206, 172, 204,
214)(111, 114, 197, 131, 116, 141, 124, 149, 163, 171, 133, 129, 166, 145, 170,
174, 191, 179, 153, 118, 164, 161, 213, 198, 152, 122, 194, 210, 127, 169, 128,
187, 112, 201, 190, 117) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 82)(3, 104, 7, 105)(4, 16)(5, 24, 13, 47)(6, 95)(8, 64, 19, 40)(9, 100,
21, 92)(10, 56)(11, 99, 27, 91)(12, 41)(14, 89, 31, 80)(15, 69, 33, 78)(17, 44,
39, 22)(18, 107)(23, 26, 46, 53)(25, 67, 48, 88)(28, 103, 49, 106)(30, 71)(32,
108)(34, 93, 59, 101)(35, 54, 61, 79)(36, 87, 62, 66)(37, 52, 63, 77)(38, 94,
68, 102)(42, 98)(43, 83)(45, 86)(50, 81, 70, 90)(51, 65, 76, 55)(57, 74)(58,
73)(60, 96)(72, 85)(75, 97)(109, 215, 159, 138)(110, 144, 123, 168)(111, 171,
153, 210)(112, 145, 170, 187)(113, 143, 139, 154)(114, 194, 118, 163)(115, 158,
208, 137)(116, 141, 213, 198)(117, 127, 179, 133)(119, 147, 151, 186)(120, 157,
196, 150)(121, 132, 207, 214)(122, 197, 149, 164)(124, 131, 152, 161)(125, 211,
200, 203)(126, 160, 146, 175)(128, 174, 166, 201)(129, 191, 169, 190)(130, 189,
212, 204)(134, 183, 209, 188)(135, 140, 193, 167)(136, 156, 148, 185)(142, 195,
165, 202)(155, 173, 199, 206)(162, 205, 182, 192)(172, 180, 177, 184)(176, 216,
178, 181)
c: (1, 3, 104, 20, 7, 105)(2, 92, 24, 32, 100, 47)(4, 38, 99, 45, 68, 91)(5, 9,
108, 13, 21, 82)(6, 106, 44, 60, 103, 22)(8, 34, 83, 19, 59, 107)(10, 81, 46,
75, 90, 23)(11, 94, 86, 27, 102, 16)(12, 25, 89, 58, 48, 80)(14, 67, 73, 31, 88,
41)(15, 42, 87, 33, 74, 66)(17, 28, 96, 39, 49, 95)(18, 101, 64, 43, 93, 40)(26,
70, 97, 53, 50, 56)(29, 37, 52, 84, 63, 77)(30, 76, 61, 85, 51, 35)(36, 98, 69,
62, 57, 78)(54, 55, 72, 79, 65, 71)(109, 145, 167, 173, 187, 132)(110, 163, 120,
205, 194, 134)(111, 115, 158, 153, 125, 211)(112, 215, 193, 170, 199, 121)(113,
202, 122, 216, 180, 149)(114, 182, 188, 118, 144, 150)(116, 140, 159, 213, 214,
206)(117, 209, 192, 179, 196, 123)(119, 166, 156, 126, 128, 130)(124, 186, 189,
152, 175, 148)(127, 162, 157, 133, 168, 183)(129, 172, 178, 169, 165, 143)(131,
212, 146, 161, 185, 151)(135, 141, 138, 207, 198, 155)(136, 201, 160, 204, 174,
147)(137, 171, 208, 203, 210, 200)(139, 184, 191, 181, 195, 190)(142, 176, 197,
177, 154, 164)
d: (9, 21)(15, 33)(22, 44)(23, 46)(24, 47)(28, 49)(34, 59)(35, 61)(36, 62)(40,
64)(50, 70)(52, 77)(55, 65)(67, 88)(80, 89)(91, 99)(94, 102)(104, 105)(111,
210)(112, 198)(113, 139)(114, 133)(115, 208)(116, 187)(117, 163)(118, 127)(120,
196)(122, 190)(124, 201)(125, 200)(128, 161)(129, 164)(130, 212)(131, 166)(132,
214)(134, 209)(138, 215)(140, 167)(141, 170)(142, 165)(144, 168)(145, 213)(147,
186)(149, 191)(152, 174)(153, 171)(155, 199)(156, 185)(160, 175)(162, 182)(169,
197)(172, 177)(179, 194)(181, 216)
C4[ 216, 69 ]
216
-1 143 154 113 139
-2 143 154 200 125
-3 202 129 184 164
-4 167 136 148 140
-5 111 210 202 184
-6 167 192 205 140
-7 169 180 195 197
-8 189 136 117 163
-9 122 200 191 115
-10 156 202 195 185
-11 126 170 151 141
-12 209 134 151 119
-13 180 171 195 153
-14 189 136 127 118
-15 112 200 115 141
-16 156 135 193 185
-17 188 157 170 141
-18 144 168 151 119
-19 179 148 204 194
-20 176 178 181 216
-21 190 125 149 208
-22 209 145 116 120
-23 166 113 181 161
-24 111 171 172 142
-25 110 166 192 131
-26 143 176 124 201
-27 198 112 146 119
-28 133 199 138 118
-29 209 188 134 183
-30 202 138 215 195
-31 133 114 148 204
-32 176 178 115 208
-33 198 125 170 208
-34 209 201 152 120
-35 112 113 181 141
-36 132 111 171 140
-37 110 192 127 118
-38 124 201 159 173
-39 198 112 150 183
-40 133 118 130 185
-41 188 147 183 186
-42 158 137 138 215
-43 146 126 182 162
-44 187 134 213 196
-45 132 189 214 204
-46 128 139 216 131
-47 165 177 210 153
-48 123 128 161 205
-49 155 114 127 215
-50 147 169 164 175
-51 121 135 191 149
-52 144 179 162 163
-53 154 178 152 174
-54 143 176 145 213
-55 167 214 129 197
-56 165 136 148 142
-57 200 125 173 206
-58 146 126 196 120
-59 134 124 174 196
-60 110 132 123 214
-61 198 170 139 216
-62 210 167 214 153
-63 133 123 114 205
-64 156 212 114 127
-65 132 169 140 164
-66 121 111 210 135
-67 144 201 162 152
-68 206 152 174 109
-69 145 158 213 203
-70 160 129 186 197
-71 165 159 109 142
-72 177 172 173 206
-73 157 160 150 175
-74 155 199 211 203
-75 212 180 184 130
-76 122 190 193 207
-77 168 182 117 194
-78 187 211 137 116
-79 154 187 178 116
-80 117 194 130 185
-81 122 190 126 151
-82 211 113 203 139
-83 192 160 205 175
-84 157 150 196 120
-85 155 199 180 184
-86 121 212 130 207
-87 171 193 207 153
-88 124 168 182 174
-89 156 179 212 163
-90 146 191 149 119
-91 145 147 116 175
-92 211 137 129 164
-93 188 157 128 161
-94 199 138 128 131
-95 135 182 193 162
-96 121 144 168 207
-97 177 189 204 172
-98 115 159 109 208
-99 187 213 160 186
-100 158 169 203 197
-101 166 150 183 131
-102 155 166 215 161
-103 117 206 163 109
-104 122 191 172 142
-105 165 177 190 149
-106 179 159 194 173
-107 110 123 147 186
-108 158 137 181 216
-109 68 103 71 98
-110 25 37 60 107
-111 66 24 36 5
-112 35 15 27 39
-113 1 23 35 82
-114 49 63 31 64
-115 15 9 32 98
-116 22 78 79 91
-117 77 80 103 8
-118 14 37 28 40
-119 12 90 27 18
-120 22 34 58 84
-121 66 51 96 86
-122 81 104 9 76
-123 48 60 63 107
-124 88 26 59 38
-125 33 2 57 21
-126 11 58 81 43
-127 14 37 49 64
-128 46 48 93 94
-129 55 3 70 92
-130 80 40 75 86
-131 46 101 25 94
-132 45 36 60 65
-133 28 40 63 31
-134 44 12 59 29
-135 66 16 51 95
-136 56 14 4 8
-137 78 92 42 108
-138 28 94 30 42
-139 1 46 82 61
-140 36 4 6 65
-141 11 35 15 17
-142 56 24 71 104
-143 1 2 26 54
-144 67 18 52 96
-145 22 69 91 54
-146 90 58 27 43
-147 91 50 41 107
-148 56 4 19 31
-149 90 105 51 21
-150 101 39 73 84
-151 11 12 81 18
-152 34 67 68 53
-153 13 47 62 87
-154 1 2 79 53
-155 102 49 74 85
-156 89 16 64 10
-157 93 17 73 84
-158 100 69 42 108
-159 38 71 106 98
-160 99 70 83 73
-161 23 102 48 93
-162 67 95 52 43
-163 89 103 8 52
-164 3 92 50 65
-165 56 47 71 105
-166 23 101 25 102
-167 55 4 6 62
-168 77 88 18 96
-169 100 50 7 65
-170 11 33 17 61
-171 13 24 36 87
-172 24 104 72 97
-173 57 38 72 106
-174 88 68 59 53
-175 91 50 83 73
-176 26 20 32 54
-177 47 72 105 97
-178 79 20 53 32
-179 89 106 19 52
-180 13 7 85 75
-181 23 35 20 108
-182 77 88 95 43
-183 101 39 29 41
-184 3 5 85 75
-185 80 16 40 10
-186 99 70 41 107
-187 44 99 78 79
-188 93 17 29 41
-189 45 14 8 97
-190 81 105 21 76
-191 90 104 51 9
-192 25 37 6 83
-193 16 95 76 87
-194 77 80 106 19
-195 13 7 30 10
-196 44 58 59 84
-197 55 100 70 7
-198 33 27 39 61
-199 28 94 74 85
-200 2 57 15 9
-201 34 67 26 38
-202 3 5 30 10
-203 100 69 82 74
-204 45 19 31 97
-205 48 6 83 63
-206 57 68 103 72
-207 96 86 76 87
-208 33 21 32 98
-209 22 12 34 29
-210 66 47 5 62
-211 78 92 82 74
-212 89 64 75 86
-213 44 99 69 54
-214 55 45 60 62
-215 102 49 30 42
-216 46 61 20 108
0