C4graphGraph forms for C4 [ 216, 73 ] = XI(Rmap(108,6){4,6|6}_12)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 73 ] = XI(Rmap(108,6){4,6|6}_12).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {91, 122}, {80, 115}, {92, 127}, {80, 125}, {72, 121}, {79, 124}, {70, 126}, {66, 123}, {79, 113}, {42, 111}, {40, 110}, {42, 109}, {51, 122}, {63, 118}, {59, 113}, {48, 123}, {50, 126}, {62, 114}, {52, 121}, {49, 127}, {60, 115}, {62, 110}, {43, 120}, {41, 125}, {32, 119}, {46, 119}, {44, 118}, {39, 124}, {43, 112}, {13, 111}, {23, 127}, {19, 122}, {28, 117}, {21, 124}, {4, 110}, {24, 114}, {5, 111}, {22, 125}, {1, 109}, {28, 112}, {25, 116}, {1, 111}, {1, 110}, {20, 123}, {17, 126}, {2, 109}, {3, 115}, {5, 116}, {9, 120}, {7, 118}, {1, 114}, {10, 121}, {3, 112}, {2, 113}, {25, 109}, {2, 116}, {14, 120}, {9, 127}, {6, 112}, {3, 117}, {15, 119}, {7, 126}, {13, 116}, {11, 114}, {10, 113}, {14, 117}, {9, 117}, {4, 121}, {6, 123}, {2, 124}, {8, 118}, {6, 120}, {3, 125}, {5, 122}, {12, 115}, {8, 119}, {38, 166}, {76, 204}, {28, 157}, {85, 212}, {37, 164}, {64, 193}, {17, 147}, {87, 213}, {25, 155}, {24, 154}, {21, 151}, {20, 150}, {18, 144}, {47, 173}, {47, 172}, {51, 176}, {67, 192}, {4, 128}, {22, 146}, {21, 145}, {47, 171}, {78, 202}, {13, 136}, {93, 216}, {49, 180}, {75, 206}, {7, 129}, {26, 156}, {65, 199}, {73, 207}, {77, 203}, {9, 142}, {84, 211}, {80, 215}, {79, 200}, {40, 175}, {14, 137}, {74, 205}, {32, 168}, {54, 190}, {55, 191}, {59, 179}, {5, 140}, {91, 210}, {81, 216}, {39, 174}, {31, 150}, {30, 151}, {29, 148}, {22, 159}, {78, 199}, {7, 141}, {95, 213}, {94, 212}, {15, 133}, {8, 130}, {66, 200}, {8, 131}, {92, 215}, {30, 149}, {19, 152}, {15, 132}, {12, 135}, {11, 128}, {65, 202}, {6, 138}, {37, 169}, {11, 134}, {93, 208}, {92, 209}, {91, 214}, {48, 189}, {76, 193}, {22, 152}, {36, 170}, {29, 147}, {27, 149}, {23, 153}, {78, 192}, {4, 139}, {47, 160}, {77, 194}, {18, 130}, {84, 196}, {53, 165}, {66, 210}, {16, 129}, {86, 199}, {83, 194}, {41, 184}, {30, 143}, {57, 168}, {70, 212}, {94, 204}, {81, 195}, {16, 131}, {85, 198}, {82, 193}, {20, 135}, {55, 164}, {56, 171}, {58, 169}, {60, 175}, {10, 158}, {95, 203}, {90, 206}, {89, 205}, {11, 159}, {17, 132}, {80, 197}, {31, 138}, {19, 134}, {55, 162}, {50, 164}, {54, 160}, {56, 174}, {69, 211}, {18, 133}, {88, 207}, {54, 161}, {61, 170}, {24, 128}, {86, 206}, {26, 131}, {79, 214}, {45, 180}, {43, 178}, {41, 176}, {35, 186}, {27, 130}, {57, 160}, {51, 169}, {54, 172}, {10, 145}, {46, 181}, {45, 182}, {42, 177}, {26, 129}, {15, 148}, {49, 170}, {32, 188}, {39, 187}, {34, 191}, {82, 207}, {72, 213}, {12, 146}, {87, 201}, {83, 205}, {27, 133}, {16, 143}, {44, 179}, {33, 190}, {56, 167}, {104, 200}, {26, 184}, {107, 201}, {103, 197}, {31, 187}, {108, 200}, {34, 134}, {28, 185}, {32, 133}, {48, 150}, {29, 186}, {99, 196}, {97, 198}, {37, 141}, {108, 196}, {107, 195}, {40, 128}, {33, 136}, {37, 140}, {35, 138}, {50, 155}, {52, 157}, {36, 142}, {105, 195}, {96, 202}, {52, 158}, {59, 145}, {34, 137}, {98, 201}, {49, 154}, {53, 158}, {12, 160}, {106, 198}, {46, 130}, {14, 162}, {13, 161}, {44, 129}, {56, 149}, {24, 182}, {33, 143}, {25, 183}, {60, 146}, {36, 139}, {106, 197}, {51, 156}, {99, 211}, {103, 215}, {23, 166}, {105, 216}, {102, 215}, {16, 163}, {101, 214}, {96, 211}, {61, 142}, {100, 208}, {17, 164}, {97, 212}, {35, 150}, {30, 171}, {21, 163}, {39, 145}, {38, 144}, {33, 151}, {27, 173}, {58, 140}, {18, 165}, {102, 209}, {101, 210}, {98, 213}, {20, 172}, {31, 167}, {45, 148}, {19, 169}, {36, 158}, {35, 153}, {34, 152}, {55, 141}, {29, 166}, {107, 208}, {106, 209}, {41, 146}, {63, 131}, {100, 216}, {23, 170}, {45, 147}, {108, 210}, {104, 214}, {53, 139}, {57, 135}, {38, 153}, {69, 135}, {72, 139}, {102, 165}, {64, 132}, {81, 148}, {100, 161}, {97, 167}, {101, 162}, {66, 138}, {93, 149}, {87, 159}, {83, 155}, {70, 141}, {86, 157}, {68, 136}, {84, 153}, {71, 137}, {96, 175}, {103, 168}, {73, 152}, {104, 185}, {96, 177}, {87, 134}, {92, 142}, {64, 147}, {67, 144}, {81, 132}, {99, 182}, {73, 159}, {91, 140}, {68, 156}, {106, 178}, {85, 143}, {98, 184}, {97, 187}, {103, 188}, {75, 151}, {71, 154}, {108, 177}, {105, 183}, {107, 181}, {83, 179}, {40, 202}, {90, 184}, {89, 187}, {90, 185}, {94, 189}, {67, 167}, {88, 188}, {38, 192}, {44, 203}, {46, 201}, {75, 163}, {69, 172}, {65, 171}, {95, 181}, {90, 176}, {78, 165}, {65, 173}, {101, 137}, {100, 136}, {95, 179}, {94, 178}, {88, 180}, {74, 166}, {43, 198}, {67, 174}, {76, 161}, {42, 196}, {89, 183}, {88, 182}, {84, 186}, {62, 208}, {63, 209}, {77, 162}, {82, 189}, {74, 186}, {93, 173}, {75, 185}, {105, 155}, {76, 190}, {77, 191}, {71, 180}, {68, 176}, {69, 177}, {70, 178}, {53, 192}, {104, 157}, {73, 188}, {57, 207}, {102, 144}, {85, 163}, {58, 204}, {61, 203}, {89, 174}, {71, 191}, {59, 194}, {99, 154}, {86, 175}, {52, 206}, {82, 168}, {63, 197}, {68, 190}, {58, 193}, {60, 199}, {48, 204}, {62, 195}, {64, 189}, {72, 181}, {74, 183}, {98, 156}, {50, 205}, {61, 194} }>;

(II) A more general form is to represent the graph as the orbit of {91, 122} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 11)(7, 16)(10, 19)(12, 23)(13, 25)(14, 28)(15, 27)(17, 30)(18, 32)(20, 35)(21, 37)(22, 36)(24, 40)(26, 44)(29, 47)(31, 48)(33, 50)(34, 52)(38, 57)(39, 58)(41, 61)(45, 65)(49, 60)(51, 59)(53, 73)(54, 74)(55, 75)(56, 64)(67, 82)(68, 83)(69, 84)(70, 85)(71, 86)(72, 87)(76, 89)(77, 90)(78, 88)(79, 91)(80, 92)(81, 93)(94, 97)(95, 98)(96, 99)(100, 105)(101, 104)(102, 103)(109, 111)(110, 114)(112, 120)(113, 122)(115, 127)(118, 131)(119, 130)(121, 134)(123, 138)(124, 140)(125, 142)(126, 143)(132, 149)(135, 153)(136, 155)(137, 157)(139, 159)(141, 163)(144, 168)(145, 169)(146, 170)(147, 171)(148, 173)(151, 164)(152, 158)(154, 175)(156, 179)(160, 166)(161, 183)(162, 185)(165, 188)(167, 189)(172, 186)(174, 193)(176, 194)(177, 196)(178, 198)(180, 199)(181, 201)(182, 202)(184, 203)(187, 204)(190, 205)(191, 206)(192, 207)(195, 208)(197, 209)(200, 210)
b: (2, 4)(3, 7)(5, 11)(6, 8)(9, 16)(12, 17)(13, 24)(14, 26)(15, 20)(18, 31)(21, 36)(22, 37)(23, 30)(25, 40)(27, 35)(28, 44)(29, 47)(32, 48)(33, 49)(34, 51)(38, 56)(39, 53)(41, 55)(42, 62)(43, 63)(45, 54)(46, 66)(50, 60)(52, 59)(57, 64)(58, 73)(61, 75)(65, 74)(68, 71)(69, 81)(70, 80)(72, 79)(76, 88)(77, 90)(78, 89)(83, 86)(84, 93)(85, 92)(87, 91)(94, 103)(95, 104)(96, 105)(97, 102)(98, 101)(99, 100)(107, 108)(109, 110)(111, 114)(112, 118)(113, 121)(115, 126)(116, 128)(117, 129)(119, 123)(120, 131)(122, 134)(124, 139)(125, 141)(127, 143)(130, 138)(132, 135)(133, 150)(136, 154)(137, 156)(140, 159)(142, 163)(144, 167)(145, 158)(146, 164)(147, 160)(148, 172)(149, 153)(151, 170)(152, 169)(155, 175)(157, 179)(161, 182)(162, 184)(165, 187)(166, 171)(168, 189)(173, 186)(174, 192)(176, 191)(177, 195)(178, 197)(180, 190)(181, 200)(183, 202)(185, 203)(188, 204)(193, 207)(194, 206)(196, 208)(198, 209)(199, 205)(201, 210)(211, 216)(212, 215)(213, 214)
c: (1, 2)(3, 8)(4, 10)(5, 13)(6, 15)(7, 12)(9, 18)(11, 21)(14, 27)(16, 22)(17, 20)(19, 33)(23, 38)(24, 39)(25, 42)(26, 41)(28, 46)(29, 35)(30, 34)(31, 45)(32, 43)(36, 53)(37, 54)(40, 59)(44, 60)(47, 55)(48, 64)(49, 67)(50, 69)(51, 68)(52, 72)(56, 71)(57, 70)(58, 76)(61, 78)(62, 79)(63, 80)(65, 77)(66, 81)(73, 85)(74, 84)(75, 87)(82, 94)(83, 96)(86, 95)(88, 97)(89, 99)(90, 98)(91, 100)(92, 102)(93, 101)(103, 106)(104, 107)(105, 108)(110, 113)(111, 116)(112, 119)(114, 124)(115, 118)(117, 130)(120, 133)(122, 136)(123, 132)(125, 131)(126, 135)(127, 144)(128, 145)(129, 146)(134, 151)(137, 149)(138, 148)(139, 158)(140, 161)(141, 160)(142, 165)(143, 152)(147, 150)(153, 166)(154, 174)(155, 177)(156, 176)(157, 181)(159, 163)(162, 173)(164, 172)(167, 180)(168, 178)(169, 190)(170, 192)(171, 191)(175, 179)(182, 187)(183, 196)(185, 201)(188, 198)(193, 204)(194, 202)(195, 200)(199, 203)(205, 211)(206, 213)(207, 212)(208, 214)(209, 215)(210, 216)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 73 ]
216
-1 110 111 114 109
-2 113 124 116 109
-3 112 125 115 117
-4 110 121 128 139
-5 111 122 116 140
-6 112 123 138 120
-7 126 118 129 141
-8 118 119 130 131
-9 127 117 120 142
-10 121 145 113 158
-11 134 114 159 128
-12 135 146 115 160
-13 111 136 116 161
-14 137 117 162 120
-15 132 133 148 119
-16 143 129 163 131
-17 132 147 126 164
-18 165 133 144 130
-19 122 134 169 152
-20 123 135 150 172
-21 145 124 151 163
-22 146 125 159 152
-23 166 170 127 153
-24 154 114 182 128
-25 155 116 183 109
-26 156 129 184 131
-27 133 149 173 130
-28 112 157 117 185
-29 166 147 148 186
-30 143 149 171 151
-31 187 167 138 150
-32 133 188 168 119
-33 143 190 136 151
-34 134 191 137 152
-35 138 150 153 186
-36 158 170 139 142
-37 169 140 141 164
-38 144 166 192 153
-39 187 145 124 174
-40 110 202 128 175
-41 176 146 125 184
-42 111 177 196 109
-43 198 112 178 120
-44 179 203 118 129
-45 147 180 148 182
-46 201 181 119 130
-47 160 171 172 173
-48 123 189 204 150
-49 154 180 170 127
-50 155 126 205 164
-51 176 122 156 169
-52 121 157 158 206
-53 165 158 192 139
-54 190 160 161 172
-55 191 162 141 164
-56 167 149 171 174
-57 135 168 160 207
-58 169 193 204 140
-59 145 113 179 194
-60 199 146 115 175
-61 170 203 194 142
-62 110 114 195 208
-63 209 118 131 197
-64 132 189 147 193
-65 199 202 171 173
-66 210 123 200 138
-67 144 167 192 174
-68 176 156 190 136
-69 177 211 135 172
-70 178 212 126 141
-71 154 180 191 137
-72 121 213 181 139
-73 188 159 152 207
-74 166 183 205 186
-75 151 206 163 185
-76 190 193 204 161
-77 191 203 194 162
-78 165 199 202 192
-79 200 113 124 214
-80 125 115 215 197
-81 132 148 216 195
-82 189 168 193 207
-83 155 179 194 205
-84 211 196 153 186
-85 143 198 212 163
-86 199 157 206 175
-87 134 201 213 159
-88 188 180 182 207
-89 187 183 205 174
-90 176 184 206 185
-91 122 210 214 140
-92 209 127 215 142
-93 149 216 173 208
-94 178 189 212 204
-95 179 213 181 203
-96 177 211 202 175
-97 187 198 167 212
-98 156 201 213 184
-99 154 211 182 196
-100 136 161 216 208
-101 210 137 214 162
-102 165 209 144 215
-103 188 168 215 197
-104 200 157 214 185
-105 155 183 216 195
-106 198 209 178 197
-107 201 181 195 208
-108 177 210 200 196
-109 1 2 25 42
-110 1 4 40 62
-111 1 13 5 42
-112 3 6 28 43
-113 2 79 59 10
-114 11 1 24 62
-115 12 3 80 60
-116 2 13 25 5
-117 3 14 28 9
-118 44 7 8 63
-119 46 15 8 32
-120 14 6 9 43
-121 4 72 52 10
-122 91 5 51 19
-123 66 48 6 20
-124 2 79 39 21
-125 22 3 80 41
-126 70 17 50 7
-127 23 92 49 9
-128 11 24 4 40
-129 44 26 16 7
-130 46 27 18 8
-131 26 16 8 63
-132 15 81 17 64
-133 15 27 18 32
-134 11 34 19 87
-135 12 57 69 20
-136 33 100 13 68
-137 34 101 14 71
-138 66 35 6 31
-139 36 4 72 53
-140 58 91 37 5
-141 55 37 70 7
-142 36 92 61 9
-143 33 16 30 85
-144 67 102 38 18
-145 59 39 10 21
-146 22 12 60 41
-147 45 17 29 64
-148 45 15 81 29
-149 56 27 93 30
-150 35 48 20 31
-151 33 30 75 21
-152 22 34 73 19
-153 23 35 38 84
-154 99 24 49 71
-155 25 50 83 105
-156 68 26 51 98
-157 104 28 52 86
-158 36 52 53 10
-159 11 22 73 87
-160 12 57 47 54
-161 100 13 54 76
-162 55 77 101 14
-163 16 85 75 21
-164 55 37 17 50
-165 78 102 18 53
-166 23 38 29 74
-167 56 67 31 97
-168 57 103 82 32
-169 58 37 51 19
-170 23 36 49 61
-171 56 47 30 65
-172 47 69 20 54
-173 47 27 93 65
-174 56 67 89 39
-175 60 40 96 86
-176 68 90 51 41
-177 69 96 42 108
-178 70 94 106 43
-179 44 59 83 95
-180 88 45 49 71
-181 46 72 95 107
-182 88 99 45 24
-183 89 25 105 74
-184 90 26 41 98
-185 90 104 28 75
-186 35 29 84 74
-187 89 39 31 97
-188 88 103 73 32
-189 48 82 94 64
-190 33 68 54 76
-191 55 77 34 71
-192 67 78 38 53
-193 58 82 64 76
-194 77 59 61 83
-195 81 105 62 107
-196 99 84 42 108
-197 80 103 106 63
-198 106 85 97 43
-199 78 60 86 65
-200 66 79 104 108
-201 46 107 87 98
-202 78 40 96 65
-203 44 77 61 95
-204 58 48 94 76
-205 89 50 83 74
-206 90 52 75 86
-207 88 57 82 73
-208 100 93 62 107
-209 102 92 106 63
-210 66 101 91 108
-211 99 69 84 96
-212 70 94 85 97
-213 72 95 87 98
-214 79 101 91 104
-215 80 102 92 103
-216 100 81 93 105
0

**************