[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 216, 74 ] =
XI(Rmap(108,11){4,12|6}_6).
(I) Following is a form readable by MAGMA:
g:=Graph<216|{ {105, 110}, {100, 109}, {100, 111}, {105, 113}, {82, 115}, {83,
114}, {77, 111}, {84, 113}, {93, 120}, {82, 122}, {87, 127}, {84, 125}, {94,
117}, {94, 112}, {71, 116}, {76, 117}, {77, 119}, {71, 123}, {83, 109}, {68,
123}, {60, 127}, {56, 125}, {56, 126}, {62, 118}, {56, 114}, {50, 121}, {55,
122}, {61, 115}, {39, 119}, {62, 110}, {39, 118}, {42, 120}, {43, 124}, {43,
112}, {26, 126}, {26, 124}, {29, 116}, {19, 121}, {4, 111}, {1, 109}, {3, 110},
{16, 125}, {1, 111}, {1, 110}, {17, 126}, {2, 109}, {1, 113}, {8, 120}, {4,
116}, {3, 115}, {2, 114}, {2, 112}, {4, 119}, {15, 124}, {12, 127}, {3, 118},
{14, 123}, {12, 121}, {7, 114}, {5, 112}, {5, 115}, {9, 127}, {2, 117}, {13,
122}, {6, 113}, {3, 122}, {7, 126}, {5, 124}, {6, 125}, {8, 116}, {11, 119},
{10, 118}, {9, 117}, {6, 120}, {7, 121}, {4, 123}, {51, 179}, {57, 185}, {68,
196}, {20, 149}, {40, 169}, {24, 153}, {22, 151}, {52, 181}, {70, 199}, {27,
153}, {54, 180}, {69, 199}, {7, 132}, {87, 212}, {86, 213}, {21, 150}, {11,
136}, {46, 173}, {57, 186}, {69, 198}, {74, 201}, {13, 137}, {82, 214}, {16,
148}, {15, 139}, {14, 138}, {48, 180}, {65, 197}, {6, 131}, {79, 202}, {34,
167}, {32, 165}, {10, 143}, {8, 141}, {73, 204}, {37, 163}, {86, 208}, {85,
211}, {38, 160}, {49, 183}, {58, 188}, {67, 197}, {5, 130}, {95, 216}, {86,
209}, {81, 214}, {78, 201}, {33, 166}, {9, 142}, {53, 178}, {60, 187}, {23,
159}, {26, 147}, {93, 212}, {74, 195}, {10, 128}, {29, 151}, {28, 150}, {22,
156}, {11, 129}, {50, 184}, {35, 168}, {92, 215}, {61, 182}, {40, 164}, {41,
165}, {57, 181}, {72, 196}, {74, 198}, {8, 133}, {94, 211}, {85, 216}, {43,
166}, {36, 169}, {32, 173}, {25, 148}, {12, 129}, {10, 135}, {52, 185}, {59,
182}, {16, 158}, {90, 212}, {78, 192}, {27, 149}, {17, 159}, {9, 134}, {89,
214}, {42, 165}, {23, 152}, {53, 186}, {71, 200}, {27, 139}, {93, 205}, {36,
180}, {35, 179}, {28, 140}, {66, 210}, {67, 211}, {72, 216}, {31, 142}, {40,
185}, {32, 177}, {48, 161}, {64, 209}, {70, 215}, {14, 156}, {92, 206}, {90,
200}, {26, 136}, {23, 133}, {22, 132}, {19, 129}, {18, 128}, {15, 157}, {58,
168}, {59, 169}, {30, 141}, {95, 204}, {33, 178}, {51, 160}, {17, 133}, {95,
203}, {81, 197}, {25, 141}, {55, 163}, {52, 161}, {63, 170}, {71, 210}, {12,
154}, {21, 131}, {20, 130}, {13, 155}, {64, 214}, {53, 162}, {91, 204}, {88,
207}, {82, 197}, {29, 133}, {17, 136}, {44, 181}, {19, 138}, {47, 182}, {51,
170}, {75, 209}, {91, 193}, {90, 192}, {11, 144}, {89, 194}, {18, 137}, {45,
182}, {13, 145}, {94, 194}, {35, 191}, {34, 190}, {28, 128}, {16, 140}, {15,
147}, {14, 146}, {54, 171}, {18, 140}, {95, 193}, {25, 135}, {24, 134}, {57,
167}, {62, 161}, {39, 135}, {29, 188}, {38, 135}, {41, 139}, {108, 206}, {106,
200}, {97, 195}, {96, 194}, {30, 189}, {108, 207}, {34, 129}, {59, 152}, {38,
130}, {98, 198}, {55, 147}, {55, 145}, {104, 206}, {60, 154}, {28, 187}, {42,
141}, {98, 202}, {25, 176}, {99, 202}, {96, 201}, {54, 159}, {60, 150}, {105,
195}, {103, 205}, {101, 207}, {97, 203}, {98, 201}, {56, 148}, {107, 199}, {106,
198}, {58, 151}, {106, 199}, {30, 176}, {99, 205}, {32, 143}, {39, 136}, {33,
142}, {48, 159}, {49, 158}, {58, 149}, {40, 152}, {41, 153}, {33, 144}, {45,
156}, {47, 158}, {31, 173}, {38, 148}, {35, 145}, {34, 144}, {27, 168}, {102,
213}, {96, 211}, {46, 157}, {48, 131}, {20, 160}, {22, 162}, {21, 161}, {47,
155}, {103, 210}, {36, 146}, {102, 208}, {44, 154}, {37, 147}, {45, 155}, {50,
132}, {24, 175}, {99, 212}, {18, 170}, {106, 210}, {21, 173}, {20, 172}, {19,
171}, {46, 150}, {23, 174}, {97, 216}, {31, 166}, {30, 164}, {31, 165}, {45,
151}, {24, 163}, {107, 215}, {49, 140}, {37, 154}, {104, 215}, {61, 130}, {83,
146}, {101, 164}, {92, 157}, {89, 157}, {84, 145}, {70, 128}, {104, 174}, {100,
162}, {70, 143}, {103, 174}, {76, 134}, {65, 138}, {77, 134}, {66, 137}, {107,
167}, {88, 149}, {103, 181}, {108, 184}, {107, 190}, {68, 146}, {100, 178}, {92,
139}, {102, 177}, {96, 183}, {98, 186}, {105, 177}, {101, 189}, {66, 155}, {87,
142}, {80, 137}, {80, 138}, {75, 144}, {108, 183}, {101, 190}, {99, 184}, {69,
153}, {65, 156}, {93, 131}, {91, 132}, {42, 203}, {44, 205}, {41, 203}, {51,
208}, {36, 192}, {37, 193}, {88, 190}, {89, 191}, {43, 204}, {90, 189}, {84,
179}, {83, 180}, {79, 168}, {78, 169}, {54, 209}, {61, 213}, {102, 143}, {69,
175}, {87, 189}, {86, 188}, {64, 171}, {81, 186}, {46, 194}, {76, 160}, {47,
195}, {66, 174}, {67, 175}, {44, 193}, {65, 172}, {73, 164}, {59, 213}, {85,
187}, {77, 163}, {63, 208}, {67, 172}, {73, 166}, {52, 196}, {104, 152}, {79,
191}, {73, 185}, {72, 187}, {68, 176}, {88, 172}, {81, 167}, {63, 200}, {79,
184}, {75, 188}, {72, 176}, {75, 178}, {91, 162}, {78, 183}, {62, 196}, {85,
175}, {80, 170}, {74, 177}, {80, 171}, {50, 207}, {49, 206}, {97, 158}, {76,
179}, {53, 202}, {63, 192}, {64, 191} }>;
(II) A more general form is to represent the graph as the orbit of {105, 110}
under the group generated by the following permutations:
a: (1, 2)(3, 5)(4, 7)(6, 9)(8, 12)(10, 15)(11, 17)(13, 20)(14, 22)(16, 24)(18,
27)(19, 29)(21, 31)(23, 34)(25, 37)(26, 39)(28, 41)(30, 44)(32, 46)(33, 48)(35,
51)(36, 53)(38, 55)(40, 57)(42, 60)(43, 62)(45, 65)(47, 67)(49, 69)(50, 71)(52,
73)(54, 75)(56, 77)(58, 80)(59, 81)(61, 82)(63, 79)(64, 86)(66, 88)(68, 91)(70,
92)(72, 95)(74, 96)(76, 84)(78, 98)(83, 100)(85, 97)(87, 93)(89, 102)(90,
99)(94, 105)(101, 103)(104, 107)(106, 108)(110, 112)(111, 114)(113, 117)(116,
121)(118, 124)(119, 126)(120, 127)(122, 130)(123, 132)(125, 134)(128, 139)(129,
133)(131, 142)(135, 147)(137, 149)(138, 151)(140, 153)(141, 154)(143, 157)(144,
159)(145, 160)(146, 162)(148, 163)(150, 165)(152, 167)(155, 172)(158, 175)(161,
166)(164, 181)(168, 170)(169, 186)(171, 188)(174, 190)(176, 193)(177, 194)(178,
180)(182, 197)(183, 198)(184, 200)(187, 203)(189, 205)(191, 208)(192, 202)(195,
211)(196, 204)(199, 206)(207, 210)(213, 214) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 4)(3, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 23)(17, 26)(18,
28)(20, 30)(22, 33)(24, 36)(25, 38)(27, 40)(29, 43)(31, 45)(32, 47)(34, 50)(35,
52)(37, 54)(39, 56)(41, 59)(42, 61)(44, 64)(46, 66)(48, 55)(49, 70)(51, 72)(57,
79)(58, 73)(60, 80)(62, 84)(63, 85)(65, 87)(67, 90)(68, 76)(69, 78)(71, 94)(75,
91)(77, 83)(81, 99)(82, 93)(86, 95)(88, 101)(89, 103)(92, 104)(96, 106)(97,
102)(107, 108)(109, 111)(110, 113)(112, 116)(114, 119)(115, 120)(117, 123)(118,
125)(121, 129)(122, 131)(124, 133)(126, 136)(127, 138)(128, 140)(130, 141)(132,
144)(134, 146)(135, 148)(137, 150)(139, 152)(142, 156)(143, 158)(145, 161)(147,
159)(149, 164)(151, 166)(153, 169)(154, 171)(155, 173)(157, 174)(160, 176)(162,
178)(163, 180)(165, 182)(167, 184)(168, 185)(170, 187)(172, 189)(175, 192)(177,
195)(179, 196)(181, 191)(183, 199)(186, 202)(188, 204)(190, 207)(193, 209)(194,
210)(197, 212)(198, 201)(200, 211)(203, 213)(205, 214)(206, 215)(208, 216)
c: (2, 3)(4, 6)(7, 10)(9, 13)(11, 16)(12, 18)(14, 21)(15, 20)(17, 25)(19,
28)(22, 32)(23, 30)(24, 35)(26, 38)(29, 42)(31, 45)(33, 47)(34, 49)(36, 52)(37,
51)(39, 56)(41, 58)(43, 61)(44, 63)(46, 65)(48, 68)(50, 70)(53, 74)(54, 72)(55,
76)(57, 78)(59, 73)(60, 80)(62, 83)(64, 85)(66, 87)(67, 89)(69, 79)(71, 93)(75,
97)(77, 84)(81, 96)(82, 94)(86, 95)(88, 92)(90, 103)(91, 102)(99, 106)(100,
105)(101, 104)(107, 108)(109, 110)(111, 113)(112, 115)(114, 118)(116, 120)(117,
122)(119, 125)(121, 128)(123, 131)(124, 130)(126, 135)(127, 137)(129, 140)(132,
143)(133, 141)(134, 145)(136, 148)(138, 150)(139, 149)(142, 155)(144, 158)(146,
161)(147, 160)(151, 165)(152, 164)(153, 168)(154, 170)(156, 173)(157, 172)(159,
176)(162, 177)(163, 179)(166, 182)(167, 183)(169, 185)(171, 187)(174, 189)(175,
191)(178, 195)(180, 196)(181, 192)(184, 199)(186, 201)(188, 203)(190, 206)(193,
208)(194, 197)(198, 202)(200, 205)(204, 213)(207, 215)(209, 216)(210, 212)(211,
214)
C4[ 216, 74 ]
216
-1 110 111 113 109
-2 112 114 117 109
-3 110 122 115 118
-4 111 123 116 119
-5 112 124 115 130
-6 113 125 120 131
-7 121 132 114 126
-8 133 116 141 120
-9 134 127 117 142
-10 143 135 128 118
-11 144 136 129 119
-12 121 154 127 129
-13 122 155 145 137
-14 123 156 146 138
-15 124 157 147 139
-16 125 158 148 140
-17 133 136 126 159
-18 137 170 128 140
-19 121 138 171 129
-20 149 160 172 130
-21 150 161 173 131
-22 132 156 151 162
-23 133 159 152 174
-24 134 163 153 175
-25 176 135 148 141
-26 124 136 147 126
-27 168 149 139 153
-28 187 128 150 140
-29 133 188 116 151
-30 176 189 141 164
-31 165 166 173 142
-32 143 165 177 173
-33 144 166 178 142
-34 144 167 190 129
-35 145 168 179 191
-36 146 169 180 192
-37 154 147 193 163
-38 135 148 160 130
-39 135 136 118 119
-40 169 152 185 164
-41 165 203 139 153
-42 165 203 141 120
-43 166 112 124 204
-44 154 181 193 205
-45 155 156 182 151
-46 157 150 194 173
-47 155 158 182 195
-48 180 159 161 131
-49 158 183 140 206
-50 121 132 184 207
-51 179 170 160 208
-52 181 161 185 196
-53 178 202 162 186
-54 209 180 159 171
-55 122 145 147 163
-56 114 125 126 148
-57 167 181 185 186
-58 188 168 149 151
-59 169 213 182 152
-60 154 187 127 150
-61 213 115 182 130
-62 110 161 118 196
-63 200 170 192 208
-64 209 191 214 171
-65 156 138 172 197
-66 155 210 137 174
-67 211 172 175 197
-68 176 123 146 196
-69 198 199 153 175
-70 143 199 215 128
-71 210 123 200 116
-72 176 187 216 196
-73 166 204 185 164
-74 198 177 201 195
-75 209 144 188 178
-76 134 179 160 117
-77 111 134 119 163
-78 201 169 192 183
-79 168 191 202 184
-80 137 170 138 171
-81 167 214 186 197
-82 122 115 214 197
-83 146 114 180 109
-84 145 113 179 125
-85 187 211 216 175
-86 209 188 213 208
-87 189 212 127 142
-88 190 149 172 207
-89 157 191 214 194
-90 189 200 212 192
-91 132 193 204 162
-92 157 215 139 206
-93 212 205 120 131
-94 112 211 117 194
-95 203 193 204 216
-96 211 201 183 194
-97 158 203 216 195
-98 198 201 202 186
-99 212 202 205 184
-100 111 178 162 109
-101 189 190 207 164
-102 143 177 213 208
-103 210 181 205 174
-104 215 206 152 174
-105 110 177 113 195
-106 198 199 210 200
-107 199 167 190 215
-108 183 184 206 207
-109 1 100 2 83
-110 1 3 105 62
-111 77 1 100 4
-112 2 5 94 43
-113 1 6 105 84
-114 56 2 83 7
-115 3 5 82 61
-116 4 71 29 8
-117 2 94 9 76
-118 3 39 62 10
-119 11 77 4 39
-120 93 6 8 42
-121 12 50 7 19
-122 55 13 3 82
-123 68 14 4 71
-124 15 26 5 43
-125 56 16 6 84
-126 56 26 17 7
-127 12 60 9 87
-128 70 28 18 10
-129 11 12 34 19
-130 5 38 61 20
-131 48 93 6 21
-132 22 91 50 7
-133 23 17 29 8
-134 77 24 9 76
-135 25 38 39 10
-136 11 26 17 39
-137 66 13 80 18
-138 14 80 19 65
-139 15 92 27 41
-140 16 49 28 18
-141 25 8 30 42
-142 33 9 31 87
-143 102 70 10 32
-144 11 33 34 75
-145 55 13 35 84
-146 68 14 36 83
-147 55 15 26 37
-148 56 25 16 38
-149 88 58 27 20
-150 46 60 28 21
-151 22 45 58 29
-152 23 59 104 40
-153 24 69 27 41
-154 44 12 37 60
-155 66 45 13 47
-156 22 45 14 65
-157 89 46 15 92
-158 47 16 49 97
-159 23 48 17 54
-160 38 51 20 76
-161 48 62 52 21
-162 22 100 91 53
-163 55 77 24 37
-164 101 40 73 30
-165 41 31 42 32
-166 33 73 31 43
-167 34 57 81 107
-168 35 79 58 27
-169 78 36 59 40
-170 80 18 51 63
-171 80 19 64 54
-172 88 67 20 65
-173 46 31 21 32
-174 66 23 103 104
-175 67 24 69 85
-176 68 25 72 30
-177 102 105 74 32
-178 33 100 53 75
-179 35 51 84 76
-180 36 48 83 54
-181 44 57 103 52
-182 45 47 59 61
-183 78 49 96 108
-184 99 79 50 108
-185 57 40 73 52
-186 57 81 53 98
-187 60 28 72 85
-188 58 29 75 86
-189 90 101 30 87
-190 88 34 101 107
-191 89 35 79 64
-192 78 90 36 63
-193 44 91 37 95
-194 89 46 94 96
-195 47 105 74 97
-196 68 72 62 52
-197 67 81 82 65
-198 69 106 74 98
-199 69 70 106 107
-200 90 71 106 63
-201 78 74 96 98
-202 99 79 53 98
-203 95 41 42 97
-204 91 73 95 43
-205 44 99 103 93
-206 92 49 104 108
-207 88 101 50 108
-208 102 51 63 86
-209 64 75 86 54
-210 66 103 71 106
-211 67 94 85 96
-212 99 90 93 87
-213 102 59 61 86
-214 89 81 82 64
-215 70 92 104 107
-216 72 95 85 97
0