[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 216, 78 ] =
XI(Rmap(108,45){9,18|18}_12).
(I) Following is a form readable by MAGMA:
g:=Graph<216|{ {88, 121}, {91, 122}, {67, 110}, {84, 122}, {68, 116}, {67, 113},
{68, 124}, {72, 115}, {75, 116}, {58, 125}, {38, 110}, {48, 120}, {58, 112},
{34, 109}, {34, 114}, {38, 118}, {46, 121}, {45, 117}, {52, 109}, {52, 111},
{45, 112}, {22, 119}, {16, 117}, {30, 123}, {26, 124}, {25, 126}, {25, 113}, {4,
111}, {20, 127}, {19, 120}, {16, 123}, {1, 109}, {3, 110}, {30, 115}, {19, 126},
{17, 124}, {1, 111}, {1, 110}, {18, 125}, {2, 109}, {1, 113}, {4, 116}, {3,
115}, {2, 114}, {10, 123}, {14, 127}, {2, 112}, {15, 125}, {13, 127}, {4, 119},
{3, 118}, {15, 122}, {13, 120}, {7, 114}, {5, 112}, {2, 117}, {14, 121}, {6,
113}, {3, 123}, {7, 127}, {6, 126}, {5, 125}, {4, 124}, {22, 111}, {5, 126},
{12, 119}, {8, 115}, {14, 114}, {5, 120}, {11, 118}, {9, 116}, {7, 122}, {6,
121}, {10, 117}, {9, 118}, {8, 119}, {26, 154}, {32, 160}, {31, 159}, {30, 158},
{29, 157}, {28, 156}, {27, 155}, {46, 174}, {65, 193}, {68, 196}, {7, 134}, {42,
171}, {24, 153}, {9, 136}, {44, 173}, {60, 189}, {21, 151}, {90, 216}, {51,
177}, {6, 133}, {84, 215}, {77, 206}, {21, 150}, {49, 178}, {13, 137}, {84,
208}, {29, 153}, {28, 152}, {52, 176}, {15, 138}, {87, 210}, {61, 184}, {63,
186}, {73, 204}, {42, 172}, {80, 214}, {47, 169}, {48, 182}, {49, 183}, {67,
197}, {40, 175}, {79, 200}, {43, 172}, {62, 185}, {8, 128}, {74, 194}, {37,
173}, {36, 172}, {35, 171}, {33, 169}, {12, 132}, {11, 131}, {10, 130}, {9,
129}, {31, 150}, {79, 198}, {40, 161}, {39, 174}, {61, 180}, {73, 192}, {11,
129}, {27, 144}, {90, 209}, {79, 196}, {41, 162}, {33, 170}, {64, 203}, {12,
128}, {95, 211}, {88, 212}, {55, 187}, {72, 196}, {74, 199}, {57, 183}, {72,
198}, {8, 135}, {95, 208}, {90, 213}, {23, 152}, {23, 135}, {83, 195}, {82,
194}, {24, 136}, {55, 166}, {89, 200}, {57, 168}, {25, 139}, {95, 205}, {89,
203}, {68, 214}, {70, 213}, {17, 133}, {83, 199}, {23, 131}, {22, 130}, {21,
129}, {58, 174}, {21, 128}, {94, 203}, {92, 201}, {82, 199}, {29, 136}, {66,
213}, {93, 202}, {18, 138}, {74, 210}, {53, 173}, {41, 176}, {92, 197}, {91,
194}, {81, 200}, {80, 201}, {43, 178}, {45, 180}, {50, 171}, {51, 170}, {57,
160}, {65, 216}, {10, 144}, {75, 209}, {15, 149}, {14, 148}, {11, 145}, {47,
181}, {59, 161}, {62, 164}, {63, 165}, {73, 211}, {16, 139}, {86, 205}, {81,
202}, {76, 215}, {28, 135}, {20, 143}, {42, 177}, {49, 170}, {50, 169}, {24,
132}, {90, 198}, {76, 208}, {17, 140}, {82, 207}, {27, 134}, {20, 137}, {19,
142}, {54, 171}, {12, 146}, {80, 206}, {31, 129}, {13, 147}, {60, 162}, {61,
163}, {18, 141}, {32, 191}, {26, 133}, {44, 179}, {53, 170}, {56, 167}, {71,
216}, {32, 128}, {99, 195}, {54, 150}, {25, 184}, {39, 134}, {31, 190}, {29,
188}, {27, 186}, {53, 151}, {103, 197}, {99, 193}, {60, 158}, {26, 185}, {30,
189}, {48, 147}, {50, 150}, {51, 151}, {47, 138}, {106, 207}, {28, 187}, {107,
204}, {105, 206}, {103, 192}, {56, 159}, {33, 137}, {53, 156}, {55, 158}, {36,
142}, {108, 198}, {37, 143}, {50, 152}, {51, 153}, {59, 145}, {33, 138}, {46,
133}, {54, 157}, {102, 202}, {96, 205}, {34, 140}, {35, 141}, {60, 146}, {52,
155}, {96, 207}, {22, 166}, {103, 215}, {98, 210}, {97, 209}, {37, 149}, {36,
148}, {35, 147}, {24, 168}, {23, 167}, {16, 161}, {20, 165}, {18, 163}, {17,
162}, {96, 211}, {96, 212}, {108, 216}, {97, 213}, {19, 164}, {39, 144}, {32,
151}, {49, 137}, {40, 145}, {42, 147}, {44, 149}, {41, 146}, {38, 154}, {106,
212}, {43, 148}, {105, 214}, {78, 142}, {104, 168}, {102, 166}, {75, 136}, {89,
154}, {69, 130}, {87, 159}, {107, 163}, {102, 175}, {87, 156}, {88, 148}, {108,
160}, {83, 157}, {91, 149}, {72, 135}, {106, 165}, {104, 167}, {94, 145}, {93,
146}, {98, 178}, {84, 134}, {108, 191}, {98, 182}, {69, 144}, {98, 183}, {91,
142}, {75, 158}, {85, 140}, {107, 178}, {105, 176}, {101, 188}, {93, 132}, {100,
184}, {94, 131}, {70, 152}, {101, 187}, {100, 186}, {85, 139}, {71, 153}, {69,
154}, {97, 190}, {47, 207}, {48, 208}, {44, 205}, {94, 191}, {92, 189}, {34,
192}, {41, 203}, {40, 202}, {35, 193}, {45, 206}, {93, 190}, {102, 130}, {86,
179}, {106, 143}, {36, 194}, {107, 141}, {37, 195}, {55, 209}, {64, 166}, {65,
167}, {43, 204}, {86, 177}, {82, 181}, {46, 201}, {73, 174}, {58, 211}, {95,
182}, {89, 176}, {77, 164}, {61, 212}, {62, 215}, {56, 210}, {78, 164}, {66,
168}, {78, 165}, {104, 131}, {103, 140}, {67, 175}, {104, 132}, {99, 143}, {88,
180}, {59, 214}, {81, 188}, {80, 189}, {38, 200}, {99, 141}, {39, 201}, {70,
169}, {100, 139}, {81, 190}, {76, 163}, {54, 199}, {66, 179}, {71, 181}, {105,
155}, {63, 204}, {92, 175}, {83, 160}, {79, 188}, {65, 181}, {85, 161}, {78,
186}, {77, 185}, {76, 184}, {66, 183}, {70, 179}, {71, 177}, {85, 162}, {101,
157}, {56, 193}, {101, 156}, {77, 180}, {57, 195}, {87, 173}, {86, 172}, {62,
197}, {64, 187}, {69, 185}, {74, 182}, {97, 159}, {59, 196}, {100, 155}, {63,
192}, {64, 191} }>;
(II) A more general form is to represent the graph as the orbit of {88, 121}
under the group generated by the following permutations:
a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 23)(17, 26)(18,
28)(20, 31)(22, 25)(24, 36)(27, 40)(29, 43)(30, 45)(32, 48)(33, 50)(34, 38)(35,
53)(37, 56)(39, 59)(41, 62)(42, 51)(44, 65)(46, 68)(47, 70)(49, 54)(52, 67)(55,
61)(57, 74)(58, 72)(60, 77)(63, 81)(64, 76)(66, 82)(69, 85)(71, 86)(73, 79)(75,
88)(78, 93)(83, 98)(84, 94)(87, 99)(89, 103)(90, 96)(91, 104)(92, 105)(95,
108)(97, 106)(100, 102)(101, 107)(109, 110)(111, 113)(112, 115)(114, 118)(116,
121)(117, 123)(119, 126)(120, 128)(122, 131)(124, 133)(125, 135)(127, 129)(130,
139)(132, 142)(134, 145)(136, 148)(137, 150)(138, 152)(140, 154)(141, 156)(143,
159)(144, 161)(146, 164)(147, 151)(149, 167)(153, 172)(155, 175)(157, 178)(158,
180)(160, 182)(162, 185)(163, 187)(165, 190)(166, 184)(168, 194)(170, 171)(173,
193)(174, 196)(176, 197)(179, 181)(183, 199)(186, 202)(188, 204)(189, 206)(191,
208)(192, 200)(195, 210)(198, 211)(201, 214)(203, 215)(205, 216)(207, 213)(209,
212) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 6)(3, 4)(5, 14)(7, 19)(8, 9)(10, 26)(11, 12)(15, 36)(16, 17)(18, 43)(20,
48)(22, 38)(23, 24)(25, 34)(27, 62)(28, 29)(30, 68)(31, 32)(33, 42)(35, 49)(37,
74)(39, 77)(40, 41)(44, 82)(45, 46)(47, 86)(50, 51)(52, 67)(53, 54)(55, 79)(56,
57)(58, 88)(59, 60)(61, 73)(63, 76)(64, 81)(65, 66)(70, 71)(72, 75)(78, 84)(83,
87)(89, 102)(92, 105)(93, 94)(95, 106)(97, 108)(98, 99)(100, 103)(109, 113)(110,
111)(112, 121)(114, 126)(115, 116)(117, 133)(118, 119)(120, 127)(122, 142)(123,
124)(125, 148)(128, 129)(130, 154)(131, 132)(134, 164)(135, 136)(137, 147)(138,
172)(139, 140)(141, 178)(143, 182)(144, 185)(145, 146)(149, 194)(150, 151)(152,
153)(155, 197)(156, 157)(158, 196)(159, 160)(161, 162)(163, 204)(165, 208)(166,
200)(167, 168)(169, 177)(170, 171)(173, 199)(174, 180)(175, 176)(179, 181)(183,
193)(184, 192)(186, 215)(187, 188)(189, 214)(190, 191)(195, 210)(198, 209)(201,
206)(202, 203)(205, 207)(211, 212)(213, 216)
c: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17,
27)(19, 30)(21, 33)(23, 35)(24, 37)(26, 39)(28, 42)(29, 44)(31, 47)(32, 49)(34,
52)(36, 55)(38, 58)(40, 61)(41, 63)(43, 64)(45, 67)(46, 69)(48, 72)(51, 53)(54,
70)(56, 65)(59, 76)(60, 78)(62, 80)(66, 83)(68, 84)(71, 87)(73, 89)(74, 90)(75,
91)(77, 92)(79, 95)(81, 96)(82, 97)(85, 100)(86, 101)(88, 102)(93, 106)(94,
107)(98, 108)(99, 104)(103, 105)(110, 112)(111, 114)(113, 117)(115, 120)(116,
122)(118, 125)(119, 127)(121, 130)(123, 126)(124, 134)(128, 137)(129, 138)(131,
141)(132, 143)(133, 144)(135, 147)(136, 149)(140, 155)(142, 158)(145, 163)(146,
165)(148, 166)(150, 169)(151, 170)(152, 171)(153, 173)(154, 174)(156, 177)(157,
179)(159, 181)(160, 183)(161, 184)(162, 186)(164, 189)(167, 193)(168, 195)(172,
187)(175, 180)(176, 192)(178, 191)(182, 198)(185, 201)(188, 205)(190, 207)(194,
209)(196, 208)(197, 206)(199, 213)(200, 211)(202, 212)(203, 204)(210, 216)(214,
215)
C4[ 216, 78 ]
216
-1 110 111 113 109
-2 112 114 117 109
-3 110 123 115 118
-4 111 124 116 119
-5 112 125 126 120
-6 121 133 113 126
-7 122 134 114 127
-8 135 115 128 119
-9 136 116 118 129
-10 144 123 117 130
-11 145 118 129 131
-12 132 146 128 119
-13 147 137 127 120
-14 121 114 148 127
-15 122 125 138 149
-16 123 117 139 161
-17 133 124 140 162
-18 125 138 141 163
-19 126 120 142 164
-20 143 165 137 127
-21 128 150 129 151
-22 111 166 119 130
-23 167 135 152 131
-24 132 168 136 153
-25 113 126 139 184
-26 154 133 124 185
-27 144 155 134 186
-28 187 156 135 152
-29 188 157 136 153
-30 123 189 158 115
-31 190 159 150 129
-32 191 160 128 151
-33 169 137 170 138
-34 114 192 140 109
-35 147 171 193 141
-36 148 172 194 142
-37 143 149 173 195
-38 110 154 200 118
-39 144 134 201 174
-40 145 202 161 175
-41 176 146 203 162
-42 177 147 171 172
-43 178 148 204 172
-44 179 149 205 173
-45 112 180 117 206
-46 121 133 201 174
-47 169 181 138 207
-48 147 182 120 208
-49 178 137 170 183
-50 169 171 150 152
-51 177 170 151 153
-52 176 111 155 109
-53 156 170 151 173
-54 199 157 171 150
-55 187 209 166 158
-56 210 167 159 193
-57 168 160 183 195
-58 112 211 125 174
-59 145 214 161 196
-60 189 146 158 162
-61 212 180 184 163
-62 215 185 164 197
-63 165 192 204 186
-64 187 166 191 203
-65 167 181 193 216
-66 168 179 213 183
-67 110 113 175 197
-68 124 214 116 196
-69 154 144 130 185
-70 179 169 213 152
-71 177 181 216 153
-72 198 135 115 196
-73 211 192 204 174
-74 199 210 182 194
-75 209 136 158 116
-76 215 184 163 208
-77 180 206 185 164
-78 165 142 164 186
-79 198 188 200 196
-80 189 201 214 206
-81 188 200 190 202
-82 199 181 194 207
-83 199 157 160 195
-84 122 134 215 208
-85 139 161 140 162
-86 177 179 172 205
-87 210 156 159 173
-88 121 212 180 148
-89 154 176 200 203
-90 198 209 213 216
-91 122 149 194 142
-92 189 201 175 197
-93 132 146 190 202
-94 145 191 203 131
-95 211 182 205 208
-96 211 212 205 207
-97 209 190 213 159
-98 210 178 182 183
-99 143 193 195 141
-100 155 139 184 186
-101 187 188 156 157
-102 166 202 130 175
-103 192 215 140 197
-104 132 167 168 131
-105 176 155 214 206
-106 143 165 212 207
-107 178 204 141 163
-108 198 191 160 216
-109 1 34 2 52
-110 1 67 3 38
-111 22 1 4 52
-112 45 2 58 5
-113 1 67 25 6
-114 34 2 14 7
-115 3 72 8 30
-116 68 4 9 75
-117 45 2 16 10
-118 11 3 38 9
-119 22 12 4 8
-120 13 48 5 19
-121 88 46 14 6
-122 91 15 7 84
-123 3 16 30 10
-124 68 4 26 17
-125 58 15 5 18
-126 25 5 6 19
-127 13 14 7 20
-128 12 8 21 32
-129 11 9 31 21
-130 22 69 102 10
-131 11 23 104 94
-132 12 24 93 104
-133 46 26 6 17
-134 27 39 7 84
-135 23 28 72 8
-136 24 29 9 75
-137 33 13 49 20
-138 33 47 15 18
-139 100 25 16 85
-140 34 103 17 85
-141 99 35 18 107
-142 78 36 91 19
-143 99 37 106 20
-144 69 27 39 10
-145 11 59 94 40
-146 12 60 93 41
-147 13 35 48 42
-148 88 14 36 43
-149 44 91 15 37
-150 50 31 21 54
-151 51 53 21 32
-152 23 70 28 50
-153 24 71 29 51
-154 89 69 26 38
-155 100 27 105 52
-156 101 28 53 87
-157 101 83 29 54
-158 55 60 30 75
-159 56 31 97 87
-160 57 83 108 32
-161 59 16 40 85
-162 60 17 41 85
-163 61 18 107 76
-164 77 78 62 19
-165 78 106 63 20
-166 22 55 102 64
-167 23 56 104 65
-168 66 24 57 104
-169 33 47 70 50
-170 33 49 51 53
-171 35 50 42 54
-172 36 42 86 43
-173 44 37 53 87
-174 46 58 39 73
-175 67 102 92 40
-176 89 105 41 52
-177 71 51 42 86
-178 49 107 43 98
-179 44 66 70 86
-180 77 88 45 61
-181 47 71 82 65
-182 48 95 74 98
-183 66 57 49 98
-184 100 25 61 76
-185 77 69 26 62
-186 78 100 27 63
-187 55 101 28 64
-188 79 101 81 29
-189 80 92 60 30
-190 81 93 31 97
-191 94 64 108 32
-192 34 103 73 63
-193 99 56 35 65
-194 36 91 82 74
-195 99 57 37 83
-196 68 79 59 72
-197 67 92 103 62
-198 79 90 72 108
-199 82 83 74 54
-200 89 79 81 38
-201 46 80 92 39
-202 102 81 93 40
-203 89 94 41 64
-204 73 63 107 43
-205 44 95 96 86
-206 77 45 80 105
-207 47 82 106 96
-208 48 84 95 76
-209 55 90 75 97
-210 56 74 87 98
-211 58 73 95 96
-212 88 61 106 96
-213 66 90 70 97
-214 68 80 59 105
-215 103 62 84 76
-216 90 71 108 65
0