C4graphGraph forms for C4 [ 216, 87 ] = BGCG({4,4}_6,0,C_3,{3,5,9,10})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 87 ] = BGCG({4,4}_6,0,C_3,{3,5,9,10}).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {72, 79}, {144, 151}, {65, 73}, {144, 157}, {69, 75}, {65, 78}, {69, 74}, {133, 149}, {64, 81}, {136, 153}, {133, 148}, {66, 80}, {138, 152}, {66, 86}, {142, 154}, {138, 158}, {70, 82}, {128, 149}, {132, 145}, {130, 148}, {64, 87}, {140, 155}, {136, 159}, {68, 83}, {67, 91}, {137, 145}, {71, 93}, {134, 156}, {131, 153}, {71, 92}, {131, 152}, {68, 89}, {72, 85}, {32, 62}, {141, 147}, {70, 88}, {32, 63}, {141, 146}, {137, 150}, {7, 39}, {154, 186}, {151, 183}, {135, 167}, {31, 63}, {22, 54}, {19, 51}, {10, 42}, {79, 111}, {82, 114}, {91, 123}, {94, 126}, {10, 43}, {154, 187}, {135, 166}, {22, 55}, {82, 115}, {94, 127}, {9, 43}, {156, 190}, {153, 187}, {24, 58}, {21, 55}, {12, 46}, {81, 115}, {84, 118}, {93, 127}, {12, 47}, {156, 191}, {139, 168}, {67, 96}, {24, 59}, {84, 119}, {1, 37}, {155, 191}, {146, 182}, {145, 181}, {134, 162}, {74, 110}, {73, 109}, {26, 62}, {25, 61}, {11, 47}, {2, 38}, {83, 119}, {9, 44}, {153, 188}, {16, 53}, {81, 116}, {88, 125}, {16, 54}, {20, 50}, {88, 126}, {92, 122}, {2, 37}, {146, 181}, {74, 109}, {26, 61}, {20, 51}, {19, 52}, {91, 124}, {92, 123}, {5, 45}, {150, 190}, {149, 189}, {139, 163}, {18, 58}, {17, 57}, {6, 46}, {1, 40}, {145, 184}, {85, 124}, {3, 41}, {147, 185}, {143, 165}, {129, 171}, {87, 125}, {6, 45}, {150, 189}, {143, 164}, {132, 175}, {129, 170}, {23, 60}, {18, 57}, {83, 120}, {23, 59}, {85, 121}, {86, 122}, {4, 41}, {148, 185}, {140, 161}, {21, 56}, {17, 60}, {4, 42}, {152, 182}, {148, 186}, {142, 160}, {8, 38}, {3, 44}, {152, 183}, {151, 184}, {147, 188}, {8, 39}, {7, 40}, {86, 121}, {130, 178}, {128, 179}, {5, 48}, {77, 120}, {15, 56}, {77, 117}, {78, 118}, {13, 52}, {73, 112}, {15, 53}, {75, 113}, {11, 48}, {78, 117}, {13, 49}, {14, 50}, {76, 113}, {76, 114}, {80, 110}, {14, 49}, {75, 116}, {79, 112}, {80, 111}, {38, 102}, {38, 96}, {47, 105}, {43, 108}, {47, 104}, {42, 98}, {44, 101}, {46, 100}, {40, 99}, {39, 107}, {43, 103}, {39, 106}, {58, 106}, {48, 97}, {53, 102}, {56, 107}, {49, 101}, {53, 97}, {29, 72}, {149, 192}, {49, 100}, {159, 200}, {29, 69}, {30, 70}, {25, 64}, {157, 196}, {27, 65}, {159, 197}, {57, 99}, {30, 69}, {155, 192}, {60, 103}, {57, 98}, {157, 193}, {158, 194}, {28, 65}, {52, 105}, {28, 66}, {54, 104}, {50, 108}, {27, 68}, {158, 193}, {31, 64}, {34, 66}, {178, 210}, {175, 207}, {166, 198}, {163, 195}, {63, 95}, {51, 83}, {34, 67}, {178, 211}, {166, 199}, {63, 94}, {51, 82}, {33, 67}, {180, 214}, {177, 211}, {168, 202}, {165, 199}, {36, 70}, {36, 71}, {180, 215}, {168, 203}, {55, 84}, {35, 71}, {179, 215}, {170, 206}, {169, 205}, {62, 90}, {33, 68}, {177, 212}, {160, 197}, {160, 198}, {164, 194}, {163, 196}, {170, 205}, {164, 195}, {161, 201}, {162, 202}, {59, 81}, {62, 84}, {35, 72}, {179, 216}, {167, 204}, {162, 201}, {59, 80}, {48, 91}, {167, 203}, {161, 204}, {165, 200}, {46, 94}, {61, 77}, {61, 76}, {41, 90}, {44, 95}, {40, 93}, {173, 216}, {60, 73}, {56, 77}, {42, 92}, {58, 76}, {55, 79}, {174, 214}, {173, 213}, {169, 208}, {45, 87}, {171, 209}, {45, 86}, {174, 213}, {37, 89}, {54, 74}, {50, 78}, {41, 85}, {37, 88}, {172, 209}, {172, 210}, {176, 206}, {52, 75}, {176, 207}, {175, 208}, {171, 212}, {35, 183}, {34, 183}, {33, 191}, {32, 191}, {36, 187}, {26, 186}, {29, 188}, {28, 190}, {27, 184}, {17, 181}, {31, 187}, {16, 181}, {22, 190}, {30, 182}, {18, 185}, {23, 188}, {21, 184}, {20, 186}, {24, 182}, {15, 189}, {14, 189}, {13, 185}, {7, 199}, {19, 211}, {110, 174}, {9, 203}, {21, 215}, {12, 206}, {8, 203}, {20, 215}, {2, 198}, {6, 194}, {17, 212}, {16, 214}, {110, 168}, {119, 177}, {3, 196}, {115, 180}, {119, 176}, {5, 205}, {11, 195}, {4, 205}, {10, 195}, {12, 199}, {24, 211}, {109, 161}, {1, 204}, {124, 177}, {5, 200}, {109, 160}, {4, 202}, {126, 176}, {122, 180}, {1, 209}, {118, 166}, {120, 169}, {27, 201}, {19, 192}, {125, 174}, {31, 204}, {26, 201}, {113, 162}, {116, 167}, {121, 173}, {125, 169}, {13, 216}, {112, 165}, {121, 172}, {3, 213}, {114, 164}, {2, 213}, {6, 209}, {87, 128}, {23, 207}, {89, 129}, {90, 130}, {114, 170}, {9, 208}, {25, 192}, {22, 207}, {116, 173}, {8, 210}, {118, 172}, {30, 197}, {90, 129}, {95, 132}, {112, 171}, {120, 163}, {10, 214}, {29, 193}, {25, 197}, {18, 206}, {14, 210}, {95, 131}, {111, 179}, {115, 175}, {28, 193}, {89, 132}, {93, 128}, {111, 178}, {7, 216}, {15, 208}, {11, 212}, {103, 135}, {106, 138}, {123, 155}, {106, 139}, {123, 154}, {96, 130}, {105, 139}, {108, 142}, {96, 131}, {127, 156}, {108, 143}, {97, 133}, {98, 134}, {107, 143}, {33, 196}, {105, 140}, {32, 198}, {36, 194}, {98, 133}, {34, 202}, {127, 151}, {101, 141}, {102, 142}, {97, 136}, {99, 137}, {117, 159}, {35, 200}, {102, 141}, {117, 158}, {113, 157}, {126, 146}, {122, 150}, {100, 137}, {100, 138}, {104, 134}, {99, 140}, {124, 147}, {103, 136}, {104, 135}, {101, 144}, {107, 144} }>;

(II) A more general form is to represent the graph as the orbit of {72, 79} under the group generated by the following permutations:

a: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21, 24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(38, 40)(41, 45)(42, 48)(43, 47)(44, 46)(50, 52)(53, 57)(54, 60)(55, 59)(56, 58)(62, 64)(65, 69)(66, 72)(67, 71)(68, 70)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99, 102)(100, 101)(103, 104)(105, 108)(106, 107)(110, 112)(113, 117)(114, 120)(115, 119)(116, 118)(122, 124)(125, 129)(126, 132)(127, 131)(128, 130)(134, 136)(137, 141)(138, 144)(139, 143)(140, 142)(145, 146)(147, 150)(148, 149)(151, 152)(153, 156)(154, 155)(157, 158)(159, 162)(160, 161)(163, 164)(165, 168)(166, 167)(169, 170)(171, 174)(172, 173)(175, 176)(177, 180)(178, 179)(182, 184)(185, 189)(186, 192)(187, 191)(188, 190)(194, 196)(197, 201)(198, 204)(199, 203)(200, 202)(206, 208)(209, 213)(210, 216)(211, 215)(212, 214)
b: (2, 7)(3, 13)(4, 19)(5, 25)(6, 31)(9, 14)(10, 20)(11, 26)(12, 32)(16, 21)(17, 27)(18, 33)(23, 28)(24, 34)(30, 35)(37, 40)(38, 39)(41, 52)(42, 51)(43, 50)(44, 49)(45, 64)(46, 63)(47, 62)(48, 61)(53, 56)(54, 55)(57, 68)(58, 67)(59, 66)(60, 65)(69, 72)(70, 71)(74, 79)(75, 85)(76, 91)(77, 97)(78, 103)(81, 86)(82, 92)(83, 98)(84, 104)(88, 93)(89, 99)(90, 105)(95, 100)(96, 106)(102, 107)(109, 112)(110, 111)(113, 124)(114, 123)(115, 122)(116, 121)(117, 136)(118, 135)(119, 134)(120, 133)(125, 128)(126, 127)(129, 140)(130, 139)(131, 138)(132, 137)(141, 144)(142, 143)(146, 151)(147, 157)(148, 163)(149, 169)(150, 175)(153, 158)(154, 164)(155, 170)(156, 176)(160, 165)(161, 171)(162, 177)(167, 172)(168, 178)(174, 179)(181, 184)(182, 183)(185, 196)(186, 195)(187, 194)(188, 193)(189, 208)(190, 207)(191, 206)(192, 205)(197, 200)(198, 199)(201, 212)(202, 211)(203, 210)(204, 209)(213, 216)(214, 215)
c: (1, 73)(2, 78)(3, 77)(4, 76)(5, 75)(6, 74)(7, 103)(8, 108)(9, 107)(10, 106)(11, 105)(12, 104)(13, 97)(14, 102)(15, 101)(16, 100)(17, 99)(18, 98)(19, 91)(20, 96)(21, 95)(22, 94)(23, 93)(24, 92)(25, 85)(26, 90)(27, 89)(28, 88)(29, 87)(30, 86)(31, 79)(32, 84)(33, 83)(34, 82)(35, 81)(36, 80)(37, 65)(38, 50)(39, 43)(40, 60)(41, 61)(42, 58)(44, 56)(45, 69)(46, 54)(48, 52)(49, 53)(51, 67)(55, 63)(59, 71)(64, 72)(66, 70)(109, 209)(110, 194)(111, 187)(112, 204)(113, 205)(114, 202)(115, 183)(116, 200)(117, 213)(118, 198)(119, 191)(120, 196)(121, 197)(122, 182)(123, 211)(124, 192)(125, 193)(126, 190)(127, 207)(128, 188)(129, 201)(130, 186)(131, 215)(132, 184)(133, 185)(134, 206)(135, 199)(136, 216)(137, 181)(138, 214)(139, 195)(140, 212)(141, 189)(142, 210)(143, 203)(144, 208)(146, 150)(147, 149)(151, 175)(152, 180)(153, 179)(154, 178)(155, 177)(156, 176)(157, 169)(158, 174)(159, 173)(160, 172)(161, 171)(162, 170)(164, 168)(165, 167)
d: (2, 6)(3, 5)(7, 31)(8, 36)(9, 35)(10, 34)(11, 33)(12, 32)(13, 25)(14, 30)(15, 29)(16, 28)(17, 27)(18, 26)(20, 24)(21, 23)(37, 209)(38, 194)(39, 187)(40, 204)(41, 205)(42, 202)(43, 183)(44, 200)(45, 213)(46, 198)(47, 191)(48, 196)(49, 197)(50, 182)(51, 211)(52, 192)(53, 193)(54, 190)(55, 207)(56, 188)(57, 201)(58, 186)(59, 215)(60, 184)(61, 185)(62, 206)(63, 199)(64, 216)(65, 181)(66, 214)(67, 195)(68, 212)(69, 189)(70, 210)(71, 203)(72, 208)(73, 145)(74, 150)(75, 149)(76, 148)(77, 147)(78, 146)(79, 175)(80, 180)(81, 179)(82, 178)(83, 177)(84, 176)(85, 169)(86, 174)(87, 173)(88, 172)(89, 171)(90, 170)(91, 163)(92, 168)(93, 167)(94, 166)(95, 165)(96, 164)(97, 157)(98, 162)(99, 161)(100, 160)(101, 159)(102, 158)(103, 151)(104, 156)(105, 155)(106, 154)(107, 153)(108, 152)(109, 137)(110, 122)(111, 115)(112, 132)(113, 133)(114, 130)(116, 128)(117, 141)(118, 126)(120, 124)(121, 125)(123, 139)(127, 135)(131, 143)(136, 144)(138, 142)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 87 ]
216
-1 209 37 204 40
-2 198 37 213 38
-3 44 213 41 196
-4 202 205 41 42
-5 45 200 48 205
-6 209 45 46 194
-7 199 39 40 216
-8 210 38 203 39
-9 44 203 43 208
-10 214 195 42 43
-11 47 212 48 195
-12 199 46 47 206
-13 49 216 52 185
-14 210 189 49 50
-15 56 189 53 208
-16 181 214 53 54
-17 57 212 60 181
-18 57 58 206 185
-19 211 192 51 52
-20 50 215 51 186
-21 55 56 215 184
-22 55 190 207 54
-23 188 59 60 207
-24 211 58 59 182
-25 192 61 64 197
-26 201 61 62 186
-27 68 201 184 65
-28 66 190 193 65
-29 188 69 72 193
-30 69 70 182 197
-31 187 204 63 64
-32 198 191 62 63
-33 67 68 191 196
-34 66 67 202 183
-35 200 71 72 183
-36 187 70 71 194
-37 88 1 89 2
-38 2 102 8 96
-39 7 106 8 107
-40 99 1 93 7
-41 90 3 4 85
-42 4 92 10 98
-43 103 9 108 10
-44 101 3 95 9
-45 5 6 86 87
-46 12 100 6 94
-47 11 12 104 105
-48 11 91 5 97
-49 100 13 101 14
-50 78 14 20 108
-51 82 83 19 20
-52 13 105 19 75
-53 102 15 16 97
-54 22 16 104 74
-55 22 79 84 21
-56 77 15 107 21
-57 99 17 18 98
-58 24 18 106 76
-59 23 24 80 81
-60 23 103 17 73
-61 77 25 26 76
-62 90 26 84 32
-63 94 95 31 32
-64 25 81 31 87
-65 78 27 28 73
-66 34 80 28 86
-67 33 34 91 96
-68 33 89 27 83
-69 29 30 74 75
-70 88 36 82 30
-71 35 36 92 93
-72 35 79 29 85
-73 112 60 65 109
-74 110 69 54 109
-75 69 113 116 52
-76 58 113 114 61
-77 56 61 117 120
-78 50 117 118 65
-79 55 111 112 72
-80 66 110 111 59
-81 59 115 116 64
-82 70 114 115 51
-83 68 51 119 120
-84 55 62 118 119
-85 121 124 72 41
-86 66 121 45 122
-87 45 125 128 64
-88 37 70 125 126
-89 132 68 37 129
-90 62 41 129 130
-91 67 123 124 48
-92 122 123 71 42
-93 71 127 40 128
-94 46 126 127 63
-95 44 132 63 131
-96 67 38 130 131
-97 133 48 136 53
-98 133 57 134 42
-99 57 137 40 140
-100 46 49 137 138
-101 44 144 49 141
-102 38 53 141 142
-103 135 136 60 43
-104 134 47 135 54
-105 47 139 52 140
-106 58 39 138 139
-107 143 56 144 39
-108 143 50 43 142
-109 160 73 161 74
-110 80 168 74 174
-111 79 178 80 179
-112 165 79 171 73
-113 157 162 75 76
-114 82 170 76 164
-115 81 180 82 175
-116 167 81 173 75
-117 77 78 158 159
-118 78 166 84 172
-119 176 177 83 84
-120 77 169 83 163
-121 172 85 173 86
-122 92 180 150 86
-123 154 155 91 92
-124 177 91 147 85
-125 88 169 174 87
-126 88 176 146 94
-127 156 93 94 151
-128 179 93 149 87
-129 89 90 170 171
-130 90 178 148 96
-131 95 96 152 153
-132 89 145 95 175
-133 148 149 97 98
-134 156 104 162 98
-135 166 167 103 104
-136 103 159 97 153
-137 99 100 145 150
-138 100 158 106 152
-139 168 105 106 163
-140 99 155 105 161
-141 101 102 146 147
-142 154 102 160 108
-143 165 107 108 164
-144 101 157 107 151
-145 132 137 181 184
-146 126 181 182 141
-147 188 124 141 185
-148 133 130 185 186
-149 133 189 192 128
-150 122 189 190 137
-151 144 127 183 184
-152 138 182 183 131
-153 187 188 136 131
-154 187 123 142 186
-155 123 191 192 140
-156 134 190 191 127
-157 144 113 193 196
-158 138 193 117 194
-159 200 136 117 197
-160 198 109 142 197
-161 201 204 140 109
-162 134 113 201 202
-163 139 195 196 120
-164 143 114 194 195
-165 143 199 112 200
-166 198 199 135 118
-167 135 203 116 204
-168 110 202 203 139
-169 125 205 120 208
-170 114 205 129 206
-171 209 112 212 129
-172 121 209 210 118
-173 121 213 116 216
-174 110 125 213 214
-175 132 115 207 208
-176 126 206 119 207
-177 211 124 212 119
-178 111 210 211 130
-179 111 215 128 216
-180 122 115 214 215
-181 145 146 16 17
-182 24 146 30 152
-183 34 35 151 152
-184 145 27 151 21
-185 13 147 148 18
-186 154 26 148 20
-187 154 36 31 153
-188 23 147 29 153
-189 14 15 149 150
-190 22 156 28 150
-191 33 155 156 32
-192 155 25 149 19
-193 157 158 28 29
-194 36 158 6 164
-195 11 163 10 164
-196 33 3 157 163
-197 25 159 160 30
-198 166 2 160 32
-199 165 12 166 7
-200 165 35 5 159
-201 26 27 161 162
-202 34 168 4 162
-203 167 168 8 9
-204 1 167 161 31
-205 4 169 5 170
-206 176 12 170 18
-207 22 176 23 175
-208 15 169 9 175
-209 1 6 171 172
-210 178 14 172 8
-211 177 24 178 19
-212 11 177 17 171
-213 2 3 173 174
-214 180 16 174 10
-215 179 180 20 21
-216 13 179 7 173
0

**************