C4graphGraph forms for C4 [ 216, 90 ] = SDD(PL(ProjLR(3,3)))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 90 ] = SDD(PL(ProjLR(3,3))).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {60, 126}, {61, 127}, {57, 125}, {56, 125}, {59, 126}, {58, 125}, {51, 123}, {52, 124}, {50, 123}, {53, 124}, {48, 122}, {49, 123}, {54, 124}, {52, 127}, {55, 124}, {38, 118}, {40, 120}, {39, 118}, {36, 118}, {47, 125}, {36, 119}, {43, 120}, {37, 118}, {33, 117}, {45, 121}, {44, 120}, {32, 117}, {47, 122}, {35, 117}, {34, 117}, {46, 121}, {41, 126}, {32, 120}, {42, 119}, {41, 119}, {33, 126}, {40, 119}, {16, 112}, {17, 113}, {19, 113}, {12, 111}, {25, 122}, {18, 113}, {11, 111}, {22, 114}, {10, 111}, {23, 114}, {20, 113}, {8, 110}, {9, 111}, {21, 114}, {6, 110}, {28, 116}, {27, 115}, {17, 121}, {4, 109}, {29, 116}, {26, 115}, {7, 110}, {24, 114}, {30, 116}, {25, 115}, {5, 110}, {31, 116}, {1, 109}, {18, 127}, {3, 109}, {2, 109}, {21, 122}, {9, 121}, {1, 115}, {13, 123}, {5, 127}, {13, 112}, {14, 112}, {15, 112}, {24, 152}, {85, 213}, {49, 177}, {48, 176}, {20, 149}, {46, 175}, {31, 158}, {52, 181}, {44, 174}, {51, 177}, {45, 175}, {60, 190}, {50, 177}, {80, 211}, {62, 189}, {66, 193}, {41, 173}, {54, 178}, {77, 201}, {40, 173}, {43, 174}, {55, 178}, {74, 207}, {40, 174}, {52, 178}, {68, 194}, {79, 201}, {15, 136}, {42, 173}, {53, 178}, {11, 131}, {93, 213}, {36, 172}, {35, 171}, {60, 180}, {61, 181}, {62, 182}, {29, 148}, {37, 172}, {36, 173}, {34, 171}, {30, 151}, {58, 179}, {63, 182}, {76, 197}, {7, 141}, {38, 172}, {33, 171}, {57, 179}, {10, 129}, {39, 172}, {32, 171}, {14, 133}, {56, 179}, {88, 212}, {2, 143}, {59, 182}, {78, 195}, {6, 136}, {89, 215}, {49, 191}, {32, 174}, {59, 180}, {94, 209}, {69, 202}, {73, 198}, {3, 146}, {45, 188}, {12, 158}, {43, 185}, {27, 137}, {22, 132}, {64, 211}, {92, 207}, {91, 200}, {86, 197}, {83, 192}, {8, 156}, {95, 203}, {90, 206}, {84, 192}, {81, 197}, {70, 210}, {33, 180}, {85, 192}, {83, 198}, {55, 162}, {67, 214}, {87, 193}, {86, 193}, {34, 186}, {95, 199}, {94, 198}, {92, 196}, {23, 142}, {93, 196}, {90, 195}, {88, 193}, {28, 133}, {57, 160}, {58, 161}, {89, 194}, {72, 211}, {75, 208}, {47, 179}, {84, 200}, {16, 141}, {41, 180}, {26, 135}, {37, 187}, {87, 201}, {19, 140}, {91, 196}, {82, 205}, {47, 176}, {3, 163}, {37, 133}, {56, 152}, {2, 163}, {5, 164}, {1, 163}, {6, 164}, {7, 164}, {48, 147}, {27, 191}, {50, 150}, {21, 176}, {4, 162}, {105, 207}, {97, 199}, {34, 132}, {9, 175}, {4, 163}, {104, 207}, {96, 199}, {28, 187}, {26, 189}, {18, 181}, {61, 154}, {63, 152}, {1, 169}, {43, 131}, {14, 166}, {12, 165}, {99, 202}, {51, 154}, {35, 138}, {25, 176}, {15, 166}, {54, 159}, {98, 200}, {102, 204}, {13, 166}, {103, 204}, {102, 205}, {45, 134}, {8, 164}, {22, 186}, {9, 165}, {11, 165}, {101, 203}, {100, 202}, {98, 204}, {10, 165}, {5, 181}, {39, 151}, {25, 169}, {24, 168}, {15, 190}, {42, 155}, {11, 185}, {100, 214}, {99, 209}, {27, 169}, {20, 167}, {26, 169}, {19, 167}, {30, 170}, {60, 136}, {14, 187}, {96, 213}, {31, 170}, {18, 167}, {16, 166}, {101, 211}, {38, 144}, {28, 170}, {17, 167}, {29, 170}, {6, 190}, {106, 210}, {49, 137}, {44, 149}, {97, 216}, {53, 140}, {62, 135}, {106, 208}, {107, 209}, {59, 128}, {108, 215}, {13, 177}, {10, 183}, {21, 168}, {17, 175}, {108, 210}, {105, 215}, {104, 214}, {22, 168}, {62, 128}, {23, 168}, {107, 212}, {103, 216}, {46, 145}, {63, 128}, {64, 128}, {65, 129}, {71, 134}, {67, 129}, {93, 159}, {90, 152}, {65, 130}, {97, 162}, {83, 144}, {66, 129}, {76, 143}, {78, 141}, {7, 195}, {100, 160}, {87, 147}, {70, 130}, {71, 131}, {82, 151}, {103, 162}, {94, 155}, {92, 153}, {68, 130}, {88, 158}, {84, 146}, {2, 197}, {69, 130}, {68, 140}, {105, 161}, {104, 160}, {79, 135}, {66, 139}, {91, 146}, {78, 135}, {76, 134}, {95, 149}, {85, 159}, {3, 200}, {31, 212}, {72, 131}, {77, 134}, {73, 132}, {108, 161}, {80, 157}, {74, 132}, {95, 145}, {94, 144}, {75, 133}, {19, 194}, {69, 148}, {75, 154}, {92, 142}, {16, 195}, {93, 142}, {88, 139}, {30, 205}, {23, 196}, {74, 153}, {72, 157}, {91, 142}, {89, 140}, {24, 206}, {29, 202}, {90, 141}, {12, 212}, {81, 137}, {80, 136}, {73, 144}, {86, 143}, {83, 138}, {8, 210}, {70, 156}, {82, 137}, {4, 216}, {87, 139}, {79, 147}, {64, 157}, {86, 139}, {77, 147}, {84, 138}, {81, 143}, {20, 203}, {85, 138}, {38, 198}, {35, 192}, {51, 208}, {54, 213}, {67, 160}, {44, 203}, {46, 199}, {39, 205}, {58, 215}, {82, 191}, {61, 208}, {80, 190}, {81, 191}, {55, 216}, {57, 214}, {74, 186}, {108, 156}, {107, 155}, {106, 154}, {105, 153}, {102, 150}, {101, 149}, {100, 148}, {98, 146}, {97, 145}, {75, 187}, {76, 188}, {63, 206}, {104, 153}, {103, 150}, {102, 151}, {96, 145}, {72, 185}, {77, 188}, {79, 189}, {73, 186}, {78, 189}, {67, 183}, {98, 150}, {66, 183}, {107, 158}, {56, 206}, {106, 156}, {64, 182}, {65, 183}, {53, 194}, {99, 148}, {89, 161}, {101, 157}, {99, 155}, {48, 201}, {65, 184}, {42, 209}, {71, 188}, {68, 184}, {69, 184}, {50, 204}, {70, 184}, {71, 185}, {96, 159} }>;

(II) A more general form is to represent the graph as the orbit of {60, 126} under the group generated by the following permutations:

a: (150, 204)
b: (147, 201)
c: (115, 169)
d: (162, 216)
e: (117, 171)
f: (138, 192)
g: (1, 3, 91, 23, 21, 25)(2, 98, 93, 22, 47, 26)(4, 84, 92, 24, 48, 27)(5, 43, 29)(6, 11, 28, 18, 40, 69)(7, 71, 30, 52, 32, 100)(8, 72, 31, 61, 44, 99)(9, 37, 19, 41, 65, 15)(10, 14, 17, 36, 68, 60)(12, 75, 20, 42, 70, 80)(13, 46, 38, 89, 59, 66)(16, 45, 39, 53, 33, 67)(34, 57, 78, 76, 102, 54)(35, 104, 90, 77, 82, 55)(49, 97, 83, 105, 63, 87)(50, 96, 73, 58, 62, 86)(51, 95, 94, 108, 64, 88)(56, 79, 81, 103, 85, 74)(101, 107, 106)(109, 146, 142, 114, 122, 115)(110, 131, 116, 127, 120, 148)(111, 133, 113, 119, 130, 136)(112, 121, 118, 140, 126, 129)(117, 160, 141, 134, 151, 124)(123, 145, 144, 161, 128, 139)(125, 135, 143, 150, 159, 132)(137, 162, 138, 153, 152, 147)(149, 155, 156, 157, 158, 154)(163, 200, 196, 168, 176, 169)(164, 185, 170, 181, 174, 202)(165, 187, 167, 173, 184, 190)(166, 175, 172, 194, 180, 183)(171, 214, 195, 188, 205, 178)(177, 199, 198, 215, 182, 193)(179, 189, 197, 204, 213, 186)(191, 216, 192, 207, 206, 201)(203, 209, 210, 211, 212, 208)
h: (111, 165)
m: (122, 176)
n1: (109, 163)
a1: (128, 182)
b1: (152, 206)
c1: (159, 213)
d1: (130, 184)
e1: (134, 188)
f1: (156, 210)
g1: (148, 202)
h1: (140, 194)
m1: (143, 197)
n2: (114, 168)
a2: (1, 2, 81, 27)(3, 76, 82, 26)(4, 86, 49, 25)(5, 104, 18, 100)(6, 74, 20, 99)(7, 92, 17, 29)(8, 105, 19, 69)(9, 28, 90, 93)(10, 75, 56, 54)(11, 37, 63, 85)(12, 14, 24, 96)(13, 21, 97, 88)(15, 22, 95, 107)(16, 23, 46, 31)(30, 78, 91, 45)(32, 40, 41, 33)(34, 44, 42, 60)(35, 43, 36, 59)(38, 64, 83, 72)(39, 62, 84, 71)(47, 55, 66, 51)(48, 103, 87, 50)(52, 67, 61, 57)(53, 65, 106, 58)(68, 70, 108, 89)(73, 101, 94, 80)(77, 102, 79, 98)(109, 143, 137, 115)(110, 153, 113, 148)(111, 133, 152, 159)(112, 114, 145, 158)(116, 141, 142, 121)(117, 120, 119, 126)(118, 128, 138, 131)(122, 162, 139, 123)(124, 129, 154, 125)(127, 160)(130, 156, 161, 140)(132, 149, 155, 136)(134, 151, 135, 146)(144, 157)(147, 150)(163, 197, 191, 169)(164, 207, 167, 202)(165, 187, 206, 213)(166, 168, 199, 212)(170, 195, 196, 175)(171, 174, 173, 180)(172, 182, 192, 185)(176, 216, 193, 177)(178, 183, 208, 179)(181, 214)(184, 210, 215, 194)(186, 203, 209, 190)(188, 205, 189, 200)(198, 211)(201, 204)
b2: (126, 180)
c2: (151, 205)
d2: (135, 189)
e2: (110, 164)
f2: (129, 183)
g2: (158, 212)
h2: (2, 27)(3, 25)(4, 26)(5, 101)(6, 20)(7, 95)(8, 44)(9, 14)(10, 37)(11, 75)(12, 28)(13, 45)(15, 17)(16, 46)(18, 80)(19, 60)(21, 91)(22, 92)(24, 93)(29, 107)(30, 88)(32, 108)(33, 89)(34, 105)(35, 58)(36, 65)(38, 67)(39, 66)(40, 70)(41, 68)(42, 69)(43, 106)(47, 84)(48, 98)(49, 76)(50, 77)(51, 71)(52, 64)(53, 59)(54, 63)(55, 62)(56, 85)(57, 83)(61, 72)(73, 104)(78, 97)(79, 103)(82, 86)(87, 102)(90, 96)(94, 100)(109, 115)(110, 149)(111, 133)(112, 121)(113, 136)(114, 142)(116, 158)(117, 161)(118, 129)(119, 130)(120, 156)(122, 146)(123, 134)(124, 128)(125, 138)(126, 140)(127, 157)(131, 154)(132, 153)(135, 162)(137, 143)(139, 151)(141, 145)(144, 160)(147, 150)(148, 155)(152, 159)(163, 169)(164, 203)(165, 187)(166, 175)(167, 190)(168, 196)(170, 212)(171, 215)(172, 183)(173, 184)(174, 210)(176, 200)(177, 188)(178, 182)(179, 192)(180, 194)(181, 211)(185, 208)(186, 207)(189, 216)(191, 197)(193, 205)(195, 199)(198, 214)(201, 204)(202, 209)(206, 213)
m2: (144, 198)
n3: (132, 186)
a3: (113, 167)
b3: (127, 181)
c3: (155, 209)
d3: (154, 208)
e3: (112, 166)
f3: (149, 203)
g3: (153, 207)
h3: (136, 190)
m3: (118, 172)
n4: (146, 200)
a4: (123, 177)
b4: (145, 199)
c4: (157, 211)
d4: (161, 215)
e4: (121, 175)
f4: (124, 178)
g4: (137, 191)
h4: (142, 196)
m4: (116, 170)
n5: (160, 214)
a5: (131, 185)
b5: (139, 193)
c5: (141, 195)
d5: (125, 179)
e5: (120, 174)
f5: (133, 187)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 90 ]
216
-1 169 115 163 109
-2 143 163 109 197
-3 200 146 163 109
-4 216 162 163 109
-5 110 181 127 164
-6 110 190 136 164
-7 110 195 141 164
-8 110 210 156 164
-9 121 165 111 175
-10 165 111 183 129
-11 165 111 185 131
-12 165 111 212 158
-13 166 177 112 123
-14 187 133 166 112
-15 166 112 190 136
-16 166 112 195 141
-17 121 167 113 175
-18 167 113 181 127
-19 167 113 194 140
-20 167 113 203 149
-21 176 122 168 114
-22 132 168 114 186
-23 168 114 196 142
-24 168 114 206 152
-25 176 122 169 115
-26 189 135 169 115
-27 169 191 115 137
-28 187 133 170 116
-29 202 148 170 116
-30 170 116 205 151
-31 212 158 170 116
-32 171 117 174 120
-33 180 126 171 117
-34 132 171 117 186
-35 192 138 171 117
-36 172 118 173 119
-37 187 133 172 118
-38 198 144 172 118
-39 172 205 118 151
-40 173 119 174 120
-41 180 126 173 119
-42 209 155 173 119
-43 174 185 120 131
-44 203 149 174 120
-45 121 188 134 175
-46 121 199 145 175
-47 176 122 179 125
-48 176 122 201 147
-49 177 123 191 137
-50 177 123 204 150
-51 154 177 123 208
-52 178 124 181 127
-53 178 124 194 140
-54 178 124 213 159
-55 178 124 216 162
-56 179 125 206 152
-57 179 125 214 160
-58 179 125 215 161
-59 180 126 182 128
-60 190 136 180 126
-61 154 181 127 208
-62 189 135 182 128
-63 182 128 206 152
-64 211 157 182 128
-65 183 129 184 130
-66 193 139 183 129
-67 214 160 183 129
-68 194 140 184 130
-69 202 148 184 130
-70 210 156 184 130
-71 188 134 185 131
-72 211 157 185 131
-73 132 198 144 186
-74 132 207 153 186
-75 154 187 133 208
-76 143 188 134 197
-77 188 134 201 147
-78 189 135 195 141
-79 189 135 201 147
-80 211 157 190 136
-81 143 191 137 197
-82 191 137 205 151
-83 198 144 192 138
-84 200 146 192 138
-85 213 159 192 138
-86 143 193 139 197
-87 201 147 193 139
-88 212 158 193 139
-89 215 161 194 140
-90 195 206 141 152
-91 200 146 196 142
-92 196 207 142 153
-93 213 159 196 142
-94 198 209 144 155
-95 199 145 203 149
-96 199 145 213 159
-97 199 145 216 162
-98 200 146 204 150
-99 209 155 202 148
-100 202 148 214 160
-101 211 157 203 149
-102 204 150 205 151
-103 204 150 216 162
-104 214 160 207 153
-105 215 161 207 153
-106 154 210 156 208
-107 209 155 212 158
-108 210 156 215 161
-109 1 2 3 4
-110 5 6 7 8
-111 11 12 9 10
-112 13 14 15 16
-113 17 18 19 20
-114 22 23 24 21
-115 1 25 26 27
-116 28 29 30 31
-117 33 34 35 32
-118 36 37 38 39
-119 36 40 41 42
-120 44 40 32 43
-121 45 46 17 9
-122 25 47 48 21
-123 13 49 50 51
-124 55 52 53 54
-125 56 57 47 58
-126 33 59 60 41
-127 5 61 18 52
-128 59 62 63 64
-129 66 67 10 65
-130 68 69 70 65
-131 11 71 72 43
-132 22 34 73 74
-133 14 37 28 75
-134 77 45 71 76
-135 78 79 26 62
-136 80 15 60 6
-137 81 27 49 82
-138 35 83 84 85
-139 66 88 86 87
-140 89 68 19 53
-141 78 90 16 7
-142 23 91 92 93
-143 2 81 86 76
-144 38 83 94 73
-145 46 95 96 97
-146 3 91 84 98
-147 77 79 48 87
-148 99 100 69 29
-149 44 101 95 20
-150 102 103 50 98
-151 102 82 39 30
-152 56 24 90 63
-153 92 104 105 74
-154 61 51 106 75
-155 99 94 107 42
-156 70 106 8 108
-157 101 80 72 64
-158 88 12 107 31
-159 93 85 96 54
-160 67 100 57 104
-161 89 58 105 108
-162 55 4 103 97
-163 1 2 3 4
-164 5 6 7 8
-165 11 12 9 10
-166 13 14 15 16
-167 17 18 19 20
-168 22 23 24 21
-169 1 25 26 27
-170 28 29 30 31
-171 33 34 35 32
-172 36 37 38 39
-173 36 40 41 42
-174 44 40 32 43
-175 45 46 17 9
-176 25 47 48 21
-177 13 49 50 51
-178 55 52 53 54
-179 56 57 47 58
-180 33 59 60 41
-181 5 61 18 52
-182 59 62 63 64
-183 66 67 10 65
-184 68 69 70 65
-185 11 71 72 43
-186 22 34 73 74
-187 14 37 28 75
-188 77 45 71 76
-189 78 79 26 62
-190 80 15 60 6
-191 81 27 49 82
-192 35 83 84 85
-193 66 88 86 87
-194 89 68 19 53
-195 78 90 16 7
-196 23 91 92 93
-197 2 81 86 76
-198 38 83 94 73
-199 46 95 96 97
-200 3 91 84 98
-201 77 79 48 87
-202 99 100 69 29
-203 44 101 95 20
-204 102 103 50 98
-205 102 82 39 30
-206 56 24 90 63
-207 92 104 105 74
-208 61 51 106 75
-209 99 94 107 42
-210 70 106 8 108
-211 101 80 72 64
-212 88 12 107 31
-213 93 85 96 54
-214 67 100 57 104
-215 89 58 105 108
-216 55 4 103 97
0

**************