C4graphGraph forms for C4 [ 216, 98 ] = BGCG(UG(ATD[108,14]);K1;6)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 216, 98 ] = BGCG(UG(ATD[108,14]);K1;6).

(I) Following is a form readable by MAGMA:

g:=Graph<216|{ {101, 111}, {98, 110}, {105, 121}, {108, 124}, {100, 118}, {101, 119}, {102, 117}, {98, 118}, {104, 126}, {97, 123}, {99, 120}, {105, 114}, {75, 111}, {86, 115}, {80, 123}, {92, 119}, {87, 122}, {81, 127}, {93, 115}, {66, 114}, {77, 124}, {69, 113}, {77, 121}, {88, 109}, {79, 118}, {70, 124}, {82, 110}, {46, 110}, {44, 110}, {60, 122}, {37, 109}, {55, 127}, {50, 122}, {57, 112}, {51, 121}, {52, 127}, {53, 120}, {33, 112}, {36, 117}, {39, 116}, {46, 125}, {39, 113}, {36, 115}, {42, 115}, {42, 112}, {53, 111}, {54, 109}, {41, 119}, {30, 126}, {27, 122}, {26, 120}, {22, 114}, {31, 123}, {19, 117}, {25, 126}, {21, 125}, {28, 116}, {17, 120}, {30, 119}, {5, 111}, {28, 118}, {1, 109}, {17, 125}, {9, 121}, {11, 123}, {1, 117}, {6, 114}, {4, 113}, {10, 127}, {4, 126}, {6, 125}, {9, 116}, {13, 112}, {2, 124}, {15, 113}, {10, 116}, {7, 135}, {45, 173}, {24, 152}, {18, 146}, {70, 198}, {14, 143}, {52, 181}, {67, 194}, {3, 129}, {85, 215}, {19, 144}, {29, 158}, {62, 189}, {76, 207}, {83, 208}, {52, 176}, {87, 211}, {61, 185}, {62, 186}, {5, 128}, {64, 197}, {5, 131}, {37, 163}, {34, 164}, {57, 191}, {74, 204}, {79, 201}, {48, 183}, {86, 209}, {12, 132}, {49, 185}, {20, 156}, {18, 155}, {54, 191}, {13, 135}, {92, 214}, {88, 210}, {38, 172}, {35, 169}, {20, 158}, {19, 153}, {71, 205}, {30, 149}, {95, 212}, {10, 134}, {22, 154}, {60, 176}, {8, 133}, {46, 163}, {45, 160}, {43, 166}, {70, 203}, {71, 202}, {54, 184}, {58, 180}, {66, 204}, {49, 190}, {56, 183}, {14, 158}, {91, 203}, {49, 161}, {36, 180}, {65, 209}, {8, 153}, {35, 178}, {16, 129}, {67, 210}, {21, 135}, {91, 201}, {69, 215}, {26, 137}, {46, 189}, {29, 142}, {56, 171}, {67, 208}, {25, 141}, {42, 190}, {23, 130}, {28, 137}, {12, 154}, {48, 166}, {15, 152}, {28, 139}, {66, 213}, {7, 159}, {89, 193}, {22, 142}, {19, 139}, {15, 151}, {74, 210}, {18, 139}, {54, 175}, {49, 168}, {38, 188}, {95, 197}, {30, 133}, {32, 188}, {47, 179}, {72, 212}, {75, 215}, {24, 133}, {87, 202}, {44, 177}, {40, 181}, {56, 165}, {61, 160}, {78, 211}, {2, 156}, {94, 192}, {50, 172}, {36, 186}, {31, 129}, {26, 132}, {60, 162}, {70, 216}, {72, 214}, {53, 170}, {93, 194}, {89, 198}, {84, 203}, {14, 174}, {108, 204}, {105, 201}, {101, 197}, {23, 183}, {7, 166}, {51, 146}, {59, 154}, {5, 167}, {106, 200}, {102, 196}, {97, 195}, {55, 149}, {11, 168}, {53, 150}, {16, 179}, {100, 192}, {103, 195}, {33, 132}, {106, 207}, {35, 134}, {7, 161}, {37, 131}, {15, 169}, {12, 171}, {105, 206}, {24, 191}, {18, 181}, {13, 170}, {2, 170}, {41, 129}, {58, 146}, {16, 185}, {107, 194}, {2, 168}, {44, 134}, {42, 128}, {32, 138}, {3, 169}, {55, 157}, {51, 152}, {1, 173}, {11, 167}, {59, 150}, {31, 177}, {96, 206}, {35, 141}, {58, 148}, {3, 172}, {96, 207}, {12, 163}, {6, 182}, {48, 128}, {61, 140}, {56, 138}, {57, 139}, {39, 148}, {103, 212}, {60, 143}, {4, 177}, {33, 148}, {17, 164}, {16, 165}, {43, 157}, {97, 215}, {62, 137}, {3, 187}, {41, 145}, {34, 154}, {38, 159}, {63, 134}, {8, 178}, {50, 136}, {29, 167}, {24, 162}, {8, 179}, {26, 161}, {17, 173}, {100, 216}, {32, 156}, {25, 165}, {29, 160}, {43, 150}, {34, 159}, {31, 162}, {63, 130}, {44, 146}, {23, 168}, {40, 151}, {13, 205}, {74, 138}, {82, 147}, {65, 131}, {87, 149}, {81, 147}, {9, 202}, {68, 135}, {21, 209}, {107, 175}, {104, 172}, {102, 162}, {75, 143}, {4, 193}, {93, 152}, {91, 158}, {69, 130}, {92, 155}, {72, 143}, {68, 140}, {14, 199}, {85, 156}, {90, 144}, {94, 147}, {27, 213}, {96, 174}, {90, 148}, {64, 144}, {102, 182}, {83, 131}, {72, 153}, {23, 197}, {95, 141}, {90, 136}, {25, 203}, {1, 213}, {92, 136}, {71, 147}, {6, 211}, {21, 192}, {20, 193}, {66, 151}, {68, 145}, {78, 155}, {84, 130}, {88, 142}, {82, 133}, {27, 195}, {103, 191}, {85, 141}, {27, 194}, {81, 136}, {94, 132}, {107, 177}, {98, 184}, {9, 210}, {22, 205}, {20, 200}, {73, 149}, {80, 140}, {11, 214}, {103, 186}, {64, 157}, {69, 155}, {96, 190}, {10, 213}, {99, 188}, {73, 169}, {38, 199}, {40, 202}, {80, 178}, {45, 206}, {65, 165}, {104, 140}, {84, 176}, {61, 216}, {108, 137}, {79, 170}, {73, 175}, {88, 190}, {77, 171}, {81, 182}, {90, 189}, {83, 180}, {47, 199}, {84, 188}, {57, 208}, {82, 187}, {59, 209}, {95, 181}, {71, 173}, {47, 196}, {89, 178}, {76, 167}, {40, 196}, {108, 128}, {47, 195}, {34, 207}, {99, 142}, {32, 206}, {100, 138}, {89, 183}, {86, 184}, {74, 164}, {41, 198}, {65, 174}, {68, 171}, {55, 199}, {94, 175}, {97, 144}, {33, 211}, {107, 153}, {99, 145}, {75, 185}, {83, 161}, {39, 212}, {85, 166}, {51, 192}, {62, 205}, {73, 189}, {78, 186}, {52, 193}, {98, 151}, {67, 182}, {77, 184}, {78, 187}, {58, 204}, {86, 160}, {63, 200}, {106, 157}, {48, 201}, {50, 200}, {101, 159}, {63, 196}, {106, 145}, {64, 187}, {79, 180}, {76, 176}, {37, 216}, {45, 208}, {43, 214}, {59, 198}, {80, 174}, {104, 150}, {93, 163}, {76, 179}, {91, 164} }>;

(II) A more general form is to represent the graph as the orbit of {101, 111} under the group generated by the following permutations:

a: (1, 2)(4, 8)(5, 9)(6, 7)(10, 11)(13, 17)(14, 18)(15, 16)(19, 20)(22, 26)(23, 27)(24, 25)(28, 29)(31, 35)(32, 36)(33, 34)(37, 77)(38, 78)(39, 76)(40, 75)(41, 73)(42, 74)(43, 81)(44, 80)(45, 79)(46, 68)(47, 69)(48, 67)(49, 66)(50, 64)(51, 65)(52, 72)(53, 71)(54, 70)(55, 92)(56, 93)(57, 91)(58, 96)(59, 94)(60, 95)(61, 98)(62, 99)(63, 97)(82, 104)(83, 105)(84, 103)(85, 102)(86, 100)(87, 101)(88, 108)(89, 107)(90, 106)(109, 124)(110, 140)(111, 202)(112, 164)(113, 179)(114, 161)(115, 138)(116, 167)(117, 156)(118, 160)(119, 149)(120, 205)(121, 131)(122, 197)(123, 134)(125, 135)(126, 133)(127, 214)(128, 210)(129, 169)(130, 195)(132, 154)(136, 157)(137, 142)(139, 158)(141, 162)(143, 181)(144, 200)(145, 189)(146, 174)(147, 150)(148, 207)(151, 185)(152, 165)(153, 193)(155, 199)(159, 211)(163, 171)(166, 182)(168, 213)(170, 173)(172, 187)(175, 198)(176, 212)(177, 178)(180, 206)(183, 194)(184, 216)(186, 188)(190, 204)(191, 203)(192, 209)(196, 215)(201, 208)
b: (2, 3)(4, 56)(5, 55)(6, 57)(7, 92)(8, 91)(9, 93)(10, 37)(11, 38)(12, 39)(13, 78)(14, 76)(15, 77)(16, 20)(17, 19)(18, 21)(22, 103)(23, 104)(24, 105)(25, 89)(26, 90)(27, 88)(28, 46)(29, 47)(30, 48)(31, 32)(34, 72)(35, 70)(36, 71)(40, 86)(41, 85)(42, 87)(43, 101)(44, 100)(45, 102)(49, 50)(52, 65)(53, 64)(54, 66)(58, 94)(59, 95)(60, 96)(61, 63)(68, 69)(73, 108)(74, 107)(75, 106)(79, 82)(80, 84)(81, 83)(97, 99)(109, 213)(110, 118)(111, 157)(112, 211)(113, 171)(114, 191)(115, 202)(116, 163)(117, 173)(119, 166)(120, 144)(121, 152)(122, 190)(123, 188)(124, 169)(125, 139)(126, 183)(127, 131)(128, 149)(129, 156)(130, 140)(132, 148)(133, 201)(134, 216)(135, 155)(136, 161)(137, 189)(138, 177)(141, 198)(142, 195)(143, 207)(145, 215)(146, 192)(147, 180)(150, 197)(151, 184)(153, 164)(154, 212)(158, 179)(159, 214)(160, 196)(162, 206)(165, 193)(167, 199)(168, 172)(170, 187)(174, 176)(175, 204)(178, 203)(181, 209)(182, 208)(185, 200)(186, 205)(194, 210)
c: (2, 3)(4, 7)(5, 8)(6, 9)(10, 17)(11, 16)(12, 18)(13, 15)(19, 37)(20, 38)(21, 39)(22, 40)(23, 41)(24, 42)(25, 43)(26, 44)(27, 45)(28, 46)(29, 47)(30, 48)(31, 49)(32, 50)(33, 51)(34, 52)(35, 53)(36, 54)(55, 91)(56, 92)(57, 93)(58, 94)(59, 95)(60, 96)(61, 97)(62, 98)(63, 99)(64, 70)(65, 72)(66, 71)(68, 69)(73, 79)(74, 81)(75, 80)(77, 78)(82, 108)(83, 107)(84, 106)(85, 104)(86, 103)(87, 105)(88, 102)(89, 101)(90, 100)(109, 117)(110, 137)(111, 178)(112, 152)(113, 135)(114, 202)(115, 191)(116, 125)(118, 189)(119, 183)(120, 134)(121, 211)(122, 206)(123, 185)(124, 187)(126, 166)(127, 164)(128, 133)(129, 168)(130, 145)(131, 153)(132, 146)(136, 138)(139, 163)(140, 215)(141, 150)(142, 196)(143, 174)(144, 216)(147, 204)(148, 192)(149, 201)(151, 205)(154, 181)(155, 171)(156, 172)(157, 203)(158, 199)(159, 193)(160, 195)(161, 177)(162, 190)(165, 214)(167, 179)(169, 170)(173, 213)(175, 180)(176, 207)(182, 210)(184, 186)(188, 200)(194, 208)(197, 198)(209, 212)
d: (1, 10)(2, 11)(3, 12)(4, 86)(5, 85)(6, 87)(7, 101)(8, 100)(9, 102)(13, 92)(14, 91)(15, 93)(16, 56)(17, 55)(18, 57)(19, 28)(20, 29)(21, 30)(22, 50)(23, 49)(24, 51)(25, 65)(26, 64)(27, 66)(31, 77)(32, 76)(33, 78)(34, 38)(35, 37)(36, 39)(40, 67)(41, 68)(42, 69)(43, 53)(44, 54)(45, 52)(46, 73)(47, 74)(48, 75)(58, 103)(59, 104)(60, 105)(61, 89)(62, 90)(63, 88)(70, 80)(71, 81)(72, 79)(82, 94)(83, 95)(84, 96)(97, 108)(98, 107)(99, 106)(109, 134)(110, 175)(111, 166)(112, 155)(113, 115)(114, 122)(116, 117)(118, 153)(119, 135)(120, 157)(121, 162)(123, 124)(125, 149)(126, 209)(127, 173)(128, 215)(129, 171)(130, 190)(131, 141)(132, 187)(133, 192)(136, 205)(137, 144)(138, 179)(140, 198)(142, 200)(143, 201)(146, 191)(148, 186)(151, 194)(154, 172)(156, 167)(160, 193)(161, 197)(163, 169)(164, 199)(170, 214)(174, 203)(176, 206)(177, 184)(178, 216)(180, 212)(181, 208)(182, 202)(183, 185)(188, 207)(195, 204)(196, 210)
e: (1, 4, 62, 60, 98, 92)(2, 5, 61, 59, 99, 91)(3, 6, 63, 58, 97, 93)(7, 96, 56)(8, 94, 55, 9, 95, 57)(10, 39, 103, 24, 82, 81)(11, 37, 104, 22, 84, 79)(12, 38, 105, 23, 83, 80)(13, 76, 100, 43, 88, 25)(14, 77, 101, 45, 89, 26)(15, 78, 102, 44, 90, 27)(16, 21, 106, 74, 85, 42)(17, 20, 108, 75, 86, 41)(18, 19, 107, 73, 87, 40)(28, 72, 54, 30, 71, 52)(29, 70, 53)(31, 46, 50, 66, 69, 36)(32, 48, 49, 65, 68, 34)(33, 47, 51, 64, 67, 35)(109, 126, 205, 176, 118, 214)(110, 136, 213, 113, 186, 162)(111, 160, 198, 120, 158, 124)(112, 179, 192, 157, 210, 141)(114, 130, 180, 123, 163, 172)(115, 129, 125, 200, 204, 215)(116, 212, 191, 133, 147, 127)(117, 177, 189, 122, 151, 155)(119, 173, 193, 137, 143, 184)(121, 197, 208, 178, 132, 199)(128, 185, 209, 145, 164, 156)(131, 140, 154, 188, 201, 168)(134, 148, 195, 152, 187, 182)(135, 207, 138, 166, 190, 165)(139, 153, 175, 149, 202, 181)(142, 203, 170, 167, 216, 150)(144, 194, 169, 211, 196, 146)(159, 206, 183, 161, 174, 171)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 216, 98 ]
216
-1 213 117 173 109
-2 156 124 168 170
-3 187 169 172 129
-4 177 113 126 193
-5 111 167 128 131
-6 211 114 125 182
-7 166 135 159 161
-8 133 178 179 153
-9 121 210 202 116
-10 134 213 116 127
-11 123 167 168 214
-12 132 154 171 163
-13 112 135 170 205
-14 143 199 158 174
-15 113 169 151 152
-16 165 179 129 185
-17 125 173 120 164
-18 155 146 181 139
-19 144 117 139 153
-20 156 200 158 193
-21 209 135 125 192
-22 154 114 205 142
-23 168 183 130 197
-24 133 191 162 152
-25 165 126 203 141
-26 132 137 161 120
-27 122 213 194 195
-28 137 116 139 118
-29 167 158 160 142
-30 133 126 149 119
-31 177 123 129 162
-32 188 156 138 206
-33 132 112 211 148
-34 154 159 207 164
-35 134 178 169 141
-36 180 115 117 186
-37 216 163 109 131
-38 188 199 159 172
-39 113 212 148 116
-40 202 181 151 196
-41 198 145 129 119
-42 112 190 115 128
-43 166 157 214 150
-44 110 177 134 146
-45 160 173 206 208
-46 110 189 125 163
-47 199 179 195 196
-48 166 201 128 183
-49 168 190 161 185
-50 122 200 136 172
-51 121 146 192 152
-52 176 181 127 193
-53 111 170 150 120
-54 191 184 109 175
-55 199 157 127 149
-56 165 138 171 183
-57 112 191 139 208
-58 146 180 148 204
-59 154 198 209 150
-60 143 176 122 162
-61 160 216 140 185
-62 189 137 205 186
-63 134 200 130 196
-64 187 144 157 197
-65 165 209 174 131
-66 114 213 204 151
-67 210 182 194 208
-68 145 135 171 140
-69 155 113 215 130
-70 198 124 203 216
-71 147 202 205 173
-72 143 212 214 153
-73 189 169 149 175
-74 210 138 204 164
-75 143 111 215 185
-76 176 167 179 207
-77 121 124 171 184
-78 187 155 211 186
-79 201 180 170 118
-80 123 178 140 174
-81 136 147 127 182
-82 110 187 133 147
-83 180 161 131 208
-84 176 188 203 130
-85 166 156 215 141
-86 209 115 160 184
-87 122 211 202 149
-88 210 190 109 142
-89 198 178 193 183
-90 144 189 136 148
-91 201 158 203 164
-92 155 136 214 119
-93 115 194 152 163
-94 132 147 192 175
-95 212 181 141 197
-96 190 206 174 207
-97 144 123 215 195
-98 110 118 151 184
-99 188 145 120 142
-100 192 138 216 118
-101 111 159 119 197
-102 182 117 162 196
-103 212 191 195 186
-104 126 150 172 140
-105 121 201 114 206
-106 145 200 157 207
-107 177 194 153 175
-108 124 137 204 128
-109 88 1 37 54
-110 44 46 82 98
-111 101 5 53 75
-112 33 13 57 42
-113 69 4 15 39
-114 22 66 6 105
-115 36 93 42 86
-116 28 39 9 10
-117 1 36 102 19
-118 100 79 28 98
-119 101 92 30 41
-120 99 26 17 53
-121 77 105 51 9
-122 27 60 50 87
-123 11 80 31 97
-124 77 2 70 108
-125 46 6 17 21
-126 25 4 104 30
-127 55 81 52 10
-128 48 5 42 108
-129 3 16 41 31
-130 23 69 84 63
-131 37 5 83 65
-132 33 12 26 94
-133 24 82 8 30
-134 44 35 63 10
-135 13 68 7 21
-136 90 81 92 50
-137 26 28 62 108
-138 56 100 74 32
-139 57 28 18 19
-140 68 80 104 61
-141 35 25 95 85
-142 22 88 99 29
-143 14 60 72 75
-144 90 19 64 97
-145 99 68 106 41
-146 44 58 18 51
-147 81 71 82 94
-148 33 90 58 39
-149 55 73 30 87
-150 59 104 53 43
-151 66 15 40 98
-152 24 15 93 51
-153 72 8 19 107
-154 22 12 34 59
-155 78 69 92 18
-156 2 85 20 32
-157 55 106 64 43
-158 14 91 29 20
-159 34 101 38 7
-160 45 61 29 86
-161 26 49 83 7
-162 24 102 60 31
-163 12 46 37 93
-164 34 91 17 74
-165 56 25 16 65
-166 48 7 85 43
-167 11 5 29 76
-168 11 23 2 49
-169 35 3 15 73
-170 2 13 79 53
-171 77 12 56 68
-172 3 38 104 50
-173 1 45 71 17
-174 14 80 96 65
-175 94 73 107 54
-176 60 84 52 76
-177 44 4 107 31
-178 89 35 80 8
-179 47 16 8 76
-180 79 36 58 83
-181 18 40 95 52
-182 67 102 81 6
-183 23 56 89 48
-184 77 86 54 98
-185 16 49 61 75
-186 78 36 103 62
-187 78 3 82 64
-188 99 38 84 32
-189 46 90 62 73
-190 88 49 96 42
-191 24 57 103 54
-192 100 94 51 21
-193 89 4 52 20
-194 67 27 93 107
-195 47 103 27 97
-196 47 102 40 63
-197 23 101 95 64
-198 89 59 70 41
-199 55 14 47 38
-200 50 106 63 20
-201 79 91 48 105
-202 71 40 9 87
-203 25 91 70 84
-204 66 58 74 108
-205 22 13 71 62
-206 45 105 96 32
-207 34 106 96 76
-208 45 67 57 83
-209 59 86 21 65
-210 88 67 74 9
-211 33 78 6 87
-212 103 39 72 95
-213 66 1 27 10
-214 11 92 72 43
-215 69 85 75 97
-216 100 37 70 61
0

**************