[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 217, 1 ] =
C_217(1,92).
(I) Following is a form readable by MAGMA:
g:=Graph<217|{ {2, 3}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208,
209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197},
{194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182,
183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171},
{168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156,
157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145},
{142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130,
131}, {128, 129}, {126, 127}, {124, 125}, {68, 69}, {66, 67}, {64, 65}, {62,
63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46,
47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15},
{16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31},
{32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {70, 71}, {72, 73}, {74, 75},
{76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91},
{92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {1, 2}, {213, 214}, {209, 210}, {205, 206}, {201,
202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178},
{173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149,
150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126},
{65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10},
{13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42},
{69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98},
{101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3, 4},
{211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163,
164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {67, 68}, {59, 60}, {51,
52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91,
92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {215, 216}, {199,
200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {55, 56}, {23, 24}, {39,
40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {207, 208}, {175,
176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95,
96}, {1, 93}, {2, 94}, {3, 95}, {32, 124}, {33, 125}, {34, 126}, {35, 127}, {4,
96}, {5, 97}, {6, 98}, {7, 99}, {12, 104}, {13, 105}, {14, 106}, {15, 107}, {20,
112}, {21, 113}, {22, 114}, {23, 115}, {28, 120}, {29, 121}, {30, 122}, {31,
123}, {8, 100}, {9, 101}, {10, 102}, {11, 103}, {24, 116}, {25, 117}, {26, 118},
{27, 119}, {16, 108}, {17, 109}, {18, 110}, {19, 111}, {2, 127}, {1, 126}, {191,
192}, {63, 64}, {3, 128}, {67, 192}, {63, 188}, {59, 184}, {55, 180}, {51, 176},
{47, 172}, {43, 168}, {7, 132}, {11, 136}, {15, 140}, {19, 144}, {23, 148}, {27,
152}, {31, 156}, {35, 160}, {39, 164}, {71, 196}, {75, 200}, {79, 204}, {83,
208}, {87, 212}, {91, 216}, {4, 129}, {62, 187}, {60, 185}, {54, 179}, {52,
177}, {46, 171}, {44, 169}, {6, 131}, {12, 137}, {14, 139}, {20, 145}, {22,
147}, {28, 153}, {30, 155}, {36, 161}, {38, 163}, {68, 193}, {70, 195}, {76,
201}, {78, 203}, {84, 209}, {86, 211}, {92, 217}, {5, 130}, {61, 186}, {53,
178}, {45, 170}, {13, 138}, {21, 146}, {29, 154}, {37, 162}, {69, 194}, {77,
202}, {85, 210}, {8, 133}, {58, 183}, {56, 181}, {42, 167}, {10, 135}, {24,
149}, {26, 151}, {40, 165}, {72, 197}, {74, 199}, {88, 213}, {90, 215}, {9,
134}, {57, 182}, {41, 166}, {25, 150}, {73, 198}, {89, 214}, {16, 141}, {50,
175}, {48, 173}, {18, 143}, {80, 205}, {82, 207}, {17, 142}, {49, 174}, {81,
206}, {36, 128}, {125, 217}, {124, 216}, {63, 155}, {62, 154}, {61, 153}, {60,
152}, {55, 147}, {54, 146}, {53, 145}, {52, 144}, {47, 139}, {46, 138}, {45,
137}, {44, 136}, {37, 129}, {38, 130}, {39, 131}, {100, 192}, {101, 193}, {102,
194}, {103, 195}, {108, 200}, {109, 201}, {110, 202}, {111, 203}, {116, 208},
{117, 209}, {118, 210}, {119, 211}, {40, 132}, {59, 151}, {58, 150}, {57, 149},
{56, 148}, {43, 135}, {42, 134}, {41, 133}, {104, 196}, {105, 197}, {106, 198},
{107, 199}, {120, 212}, {121, 213}, {122, 214}, {123, 215}, {48, 140}, {51,
143}, {50, 142}, {49, 141}, {112, 204}, {113, 205}, {114, 206}, {115, 207}, {32,
157}, {34, 159}, {33, 158}, {1, 217}, {64, 156}, {67, 159}, {66, 158}, {65,
157}, {96, 188}, {97, 189}, {98, 190}, {99, 191}, {68, 160}, {69, 161}, {70,
162}, {71, 163}, {76, 168}, {77, 169}, {78, 170}, {79, 171}, {84, 176}, {85,
177}, {86, 178}, {87, 179}, {92, 184}, {93, 185}, {94, 186}, {95, 187}, {72,
164}, {73, 165}, {74, 166}, {75, 167}, {88, 180}, {89, 181}, {90, 182}, {91,
183}, {80, 172}, {81, 173}, {82, 174}, {83, 175}, {64, 189}, {66, 191}, {65,
190}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 93)(3, 185)(4, 60)(5, 152)(6, 27)(7, 119)(8, 211)(9, 86)(10, 178)(11,
53)(12, 145)(13, 20)(14, 112)(15, 204)(16, 79)(17, 171)(18, 46)(19, 138)(21,
105)(22, 197)(23, 72)(24, 164)(25, 39)(26, 131)(28, 98)(29, 190)(30, 65)(31,
157)(33, 124)(34, 216)(35, 91)(36, 183)(37, 58)(38, 150)(40, 117)(41, 209)(42,
84)(43, 176)(44, 51)(45, 143)(47, 110)(48, 202)(49, 77)(50, 169)(52, 136)(54,
103)(55, 195)(56, 70)(57, 162)(59, 129)(61, 96)(62, 188)(64, 155)(66, 122)(67,
214)(68, 89)(69, 181)(71, 148)(73, 115)(74, 207)(75, 82)(76, 174)(78, 141)(80,
108)(81, 200)(83, 167)(85, 134)(87, 101)(88, 193)(90, 160)(92, 127)(95, 186)(97,
153)(99, 120)(100, 212)(102, 179)(104, 146)(106, 113)(107, 205)(109, 172)(111,
139)(114, 198)(116, 165)(118, 132)(121, 191)(123, 158)(126, 217)(128, 184)(130,
151)(133, 210)(135, 177)(137, 144)(140, 203)(142, 170)(147, 196)(149, 163)(154,
189)(159, 215)(161, 182)(166, 208)(168, 175)(173, 201)(180, 194)(192, 213)(199,
206) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217)
c: (2, 126)(3, 34)(4, 159)(5, 67)(6, 192)(7, 100)(9, 133)(10, 41)(11, 166)(12,
74)(13, 199)(14, 107)(16, 140)(17, 48)(18, 173)(19, 81)(20, 206)(21, 114)(23,
147)(24, 55)(25, 180)(26, 88)(27, 213)(28, 121)(30, 154)(31, 62)(32, 187)(33,
95)(35, 128)(37, 161)(38, 69)(39, 194)(40, 102)(42, 135)(44, 168)(45, 76)(46,
201)(47, 109)(49, 142)(51, 175)(52, 83)(53, 208)(54, 116)(56, 149)(58, 182)(59,
90)(60, 215)(61, 123)(63, 156)(65, 189)(66, 97)(68, 130)(70, 163)(72, 196)(73,
104)(75, 137)(77, 170)(79, 203)(80, 111)(82, 144)(84, 177)(86, 210)(87, 118)(89,
151)(91, 184)(93, 217)(94, 125)(96, 158)(98, 191)(101, 132)(103, 165)(105,
198)(108, 139)(110, 172)(112, 205)(115, 146)(117, 179)(119, 212)(122, 153)(124,
186)(129, 160)(131, 193)(136, 167)(138, 200)(143, 174)(145, 207)(150, 181)(152,
214)(157, 188)(164, 195)(171, 202)(178, 209)(185, 216)
C4[ 217, 1 ]
217
-1 2 93 126 217
-2 1 3 94 127
-3 2 4 95 128
-4 3 5 96 129
-5 4 6 97 130
-6 5 7 98 131
-7 99 132 6 8
-8 100 133 7 9
-9 101 134 8 10
-10 11 102 135 9
-11 12 103 136 10
-12 11 13 104 137
-13 12 14 105 138
-14 13 15 106 139
-15 14 16 107 140
-16 15 17 108 141
-17 16 18 109 142
-18 110 143 17 19
-19 111 144 18 20
-20 112 145 19 21
-21 22 113 146 20
-22 23 114 147 21
-23 22 24 115 148
-24 23 25 116 149
-25 24 26 117 150
-26 25 27 118 151
-27 26 28 119 152
-28 27 29 120 153
-29 121 154 28 30
-30 122 155 29 31
-31 123 156 30 32
-32 33 124 157 31
-33 34 125 158 32
-34 33 35 126 159
-35 34 36 127 160
-36 35 37 128 161
-37 36 38 129 162
-38 37 39 130 163
-39 38 40 131 164
-40 132 165 39 41
-41 133 166 40 42
-42 134 167 41 43
-43 44 135 168 42
-44 45 136 169 43
-45 44 46 137 170
-46 45 47 138 171
-47 46 48 139 172
-48 47 49 140 173
-49 48 50 141 174
-50 49 51 142 175
-51 143 176 50 52
-52 144 177 51 53
-53 145 178 52 54
-54 55 146 179 53
-55 56 147 180 54
-56 55 57 148 181
-57 56 58 149 182
-58 57 59 150 183
-59 58 60 151 184
-60 59 61 152 185
-61 60 62 153 186
-62 154 187 61 63
-63 155 188 62 64
-64 156 189 63 65
-65 66 157 190 64
-66 67 158 191 65
-67 66 68 159 192
-68 67 69 160 193
-69 68 70 161 194
-70 69 71 162 195
-71 70 72 163 196
-72 71 73 164 197
-73 165 198 72 74
-74 166 199 73 75
-75 167 200 74 76
-76 77 168 201 75
-77 78 169 202 76
-78 77 79 170 203
-79 78 80 171 204
-80 79 81 172 205
-81 80 82 173 206
-82 81 83 174 207
-83 82 84 175 208
-84 176 209 83 85
-85 177 210 84 86
-86 178 211 85 87
-87 88 179 212 86
-88 89 180 213 87
-89 88 90 181 214
-90 89 91 182 215
-91 90 92 183 216
-92 91 93 184 217
-93 1 92 94 185
-94 2 93 95 186
-95 187 3 94 96
-96 188 4 95 97
-97 189 5 96 98
-98 99 190 6 97
-99 100 191 7 98
-100 99 101 192 8
-101 100 102 193 9
-102 101 103 194 10
-103 11 102 104 195
-104 12 103 105 196
-105 13 104 106 197
-106 198 14 105 107
-107 199 15 106 108
-108 200 16 107 109
-109 110 201 17 108
-110 111 202 18 109
-111 110 112 203 19
-112 111 113 204 20
-113 112 114 205 21
-114 22 113 115 206
-115 23 114 116 207
-116 24 115 117 208
-117 209 25 116 118
-118 210 26 117 119
-119 211 27 118 120
-120 121 212 28 119
-121 122 213 29 120
-122 121 123 214 30
-123 122 124 215 31
-124 123 125 216 32
-125 33 124 126 217
-126 1 34 125 127
-127 2 35 126 128
-128 3 36 127 129
-129 4 37 128 130
-130 5 38 129 131
-131 132 6 39 130
-132 133 7 40 131
-133 132 134 8 41
-134 133 135 9 42
-135 134 136 10 43
-136 11 44 135 137
-137 12 45 136 138
-138 13 46 137 139
-139 14 47 138 140
-140 15 48 139 141
-141 16 49 140 142
-142 143 17 50 141
-143 144 18 51 142
-144 143 145 19 52
-145 144 146 20 53
-146 145 147 21 54
-147 22 55 146 148
-148 23 56 147 149
-149 24 57 148 150
-150 25 58 149 151
-151 26 59 150 152
-152 27 60 151 153
-153 154 28 61 152
-154 155 29 62 153
-155 154 156 30 63
-156 155 157 31 64
-157 156 158 32 65
-158 33 66 157 159
-159 34 67 158 160
-160 35 68 159 161
-161 36 69 160 162
-162 37 70 161 163
-163 38 71 162 164
-164 165 39 72 163
-165 166 40 73 164
-166 165 167 41 74
-167 166 168 42 75
-168 167 169 43 76
-169 44 77 168 170
-170 45 78 169 171
-171 46 79 170 172
-172 47 80 171 173
-173 48 81 172 174
-174 49 82 173 175
-175 176 50 83 174
-176 177 51 84 175
-177 176 178 52 85
-178 177 179 53 86
-179 178 180 54 87
-180 55 88 179 181
-181 56 89 180 182
-182 57 90 181 183
-183 58 91 182 184
-184 59 92 183 185
-185 60 93 184 186
-186 187 61 94 185
-187 188 62 95 186
-188 187 189 63 96
-189 188 190 64 97
-190 189 191 65 98
-191 66 99 190 192
-192 67 100 191 193
-193 68 101 192 194
-194 69 102 193 195
-195 70 103 194 196
-196 71 104 195 197
-197 198 72 105 196
-198 199 73 106 197
-199 198 200 74 107
-200 199 201 75 108
-201 200 202 76 109
-202 77 110 201 203
-203 78 111 202 204
-204 79 112 203 205
-205 80 113 204 206
-206 81 114 205 207
-207 82 115 206 208
-208 209 83 116 207
-209 210 84 117 208
-210 209 211 85 118
-211 210 212 86 119
-212 211 213 87 120
-213 88 121 212 214
-214 89 122 213 215
-215 90 123 214 216
-216 91 124 215 217
-217 1 92 125 216
0