C4graphGraph forms for C4 [ 218, 1 ] = W(109,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 218, 1 ] = W(109,2).

(I) Following is a form readable by MAGMA:

g:=Graph<218|{ {2, 3}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {1, 2}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3, 4}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {1, 109}, {2, 110}, {3, 111}, {16, 124}, {17, 125}, {18, 126}, {19, 127}, {1, 111}, {16, 126}, {17, 127}, {2, 112}, {3, 113}, {6, 116}, {7, 117}, {10, 120}, {11, 121}, {14, 124}, {15, 125}, {4, 112}, {5, 113}, {6, 114}, {7, 115}, {12, 120}, {13, 121}, {14, 122}, {15, 123}, {4, 114}, {5, 115}, {12, 122}, {13, 123}, {8, 116}, {9, 117}, {10, 118}, {11, 119}, {8, 118}, {9, 119}, {63, 64}, {191, 192}, {18, 128}, {63, 173}, {62, 172}, {59, 169}, {58, 168}, {55, 165}, {54, 164}, {51, 161}, {50, 160}, {19, 129}, {22, 132}, {23, 133}, {26, 136}, {27, 137}, {30, 140}, {31, 141}, {82, 192}, {83, 193}, {86, 196}, {87, 197}, {90, 200}, {91, 201}, {94, 204}, {95, 205}, {20, 128}, {63, 171}, {62, 170}, {61, 169}, {60, 168}, {55, 163}, {54, 162}, {53, 161}, {52, 160}, {21, 129}, {22, 130}, {23, 131}, {28, 136}, {29, 137}, {30, 138}, {31, 139}, {84, 192}, {85, 193}, {86, 194}, {87, 195}, {92, 200}, {93, 201}, {94, 202}, {95, 203}, {20, 130}, {61, 171}, {60, 170}, {53, 163}, {52, 162}, {21, 131}, {28, 138}, {29, 139}, {84, 194}, {85, 195}, {92, 202}, {93, 203}, {24, 132}, {59, 167}, {58, 166}, {57, 165}, {56, 164}, {25, 133}, {26, 134}, {27, 135}, {88, 196}, {89, 197}, {90, 198}, {91, 199}, {24, 134}, {57, 167}, {56, 166}, {25, 135}, {88, 198}, {89, 199}, {32, 140}, {51, 159}, {50, 158}, {49, 157}, {48, 156}, {33, 141}, {34, 142}, {35, 143}, {96, 204}, {97, 205}, {98, 206}, {99, 207}, {32, 142}, {49, 159}, {48, 158}, {33, 143}, {96, 206}, {97, 207}, {34, 144}, {47, 157}, {46, 156}, {43, 153}, {42, 152}, {35, 145}, {38, 148}, {39, 149}, {98, 208}, {99, 209}, {102, 212}, {103, 213}, {106, 216}, {107, 217}, {36, 144}, {47, 155}, {46, 154}, {45, 153}, {44, 152}, {37, 145}, {38, 146}, {39, 147}, {100, 208}, {101, 209}, {102, 210}, {103, 211}, {108, 216}, {109, 217}, {110, 218}, {36, 146}, {45, 155}, {44, 154}, {37, 147}, {100, 210}, {101, 211}, {108, 218}, {40, 148}, {43, 151}, {42, 150}, {41, 149}, {104, 212}, {105, 213}, {106, 214}, {107, 215}, {40, 150}, {41, 151}, {104, 214}, {105, 215}, {1, 218}, {64, 172}, {67, 175}, {66, 174}, {65, 173}, {80, 188}, {81, 189}, {82, 190}, {83, 191}, {64, 174}, {65, 175}, {80, 190}, {81, 191}, {66, 176}, {67, 177}, {70, 180}, {71, 181}, {74, 184}, {75, 185}, {78, 188}, {79, 189}, {68, 176}, {69, 177}, {70, 178}, {71, 179}, {76, 184}, {77, 185}, {78, 186}, {79, 187}, {68, 178}, {69, 179}, {76, 186}, {77, 187}, {72, 180}, {73, 181}, {74, 182}, {75, 183}, {72, 182}, {73, 183}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (71, 180)
b: (40, 149)
c: (36, 145)
d: (20, 129)
e: (13, 122)
f: (65, 174)
g: (9, 118)
h: (17, 126)
m: (38, 147)
n1: (56, 165)
a1: (2, 111)
b1: (97, 206)
c1: (35, 144)
d1: (48, 157)
e1: (76, 185)
f1: (91, 200)
g1: (25, 134)
h1: (86, 195)
m1: (88, 197)
n2: (81, 190)
a2: (26, 135)
b2: (59, 168)
c2: (70, 179)
d2: (66, 175)
e2: (32, 141)
f2: (68, 177)
g2: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109)(110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218)
h2: (100, 209)
m2: (61, 170)
n3: (102, 211)
a3: (34, 143)
b3: (108, 217)
c3: (94, 203)
d3: (73, 182)
e3: (4, 113)
f3: (23, 132)
g3: (85, 194)
h3: (46, 155)
m3: (67, 176)
n4: (47, 156)
a4: (109, 218)
b4: (3, 112)
c4: (74, 183)
d4: (50, 159)
e4: (19, 128)
f4: (60, 169)
g4: (51, 160)
h4: (24, 133)
m4: (52, 161)
n5: (101, 210)
a5: (39, 148)
b5: (45, 154)
c5: (93, 202)
d5: (31, 140)
e5: (79, 188)
f5: (80, 189)
g5: (58, 167)
h5: (57, 166)
m5: (28, 137)
n6: (75, 184)
a6: (12, 121)
b6: (69, 178)
c6: (6, 115)
d6: (92, 201)
e6: (62, 171)
f6: (55, 164)
g6: (84, 193)
h6: (53, 162)
m6: (5, 114)
n7: (8, 117)
a7: (107, 216)
b7: (41, 150)
c7: (72, 181)
d7: (83, 192)
e7: (10, 119)
f7: (105, 214)
g7: (43, 152)
h7: (89, 198)
m7: (27, 136)
n8: (78, 187)
a8: (96, 205)
b8: (14, 123)
c8: (16, 125)
d8: (2, 109)(3, 108)(4, 107)(5, 106)(6, 105)(7, 104)(8, 103)(9, 102)(10, 101)(11, 100)(12, 99)(13, 98)(14, 97)(15, 96)(16, 95)(17, 94)(18, 93)(19, 92)(20, 91)(21, 90)(22, 89)(23, 88)(24, 87)(25, 86)(26, 85)(27, 84)(28, 83)(29, 82)(30, 81)(31, 80)(32, 79)(33, 78)(34, 77)(35, 76)(36, 75)(37, 74)(38, 73)(39, 72)(40, 71)(41, 70)(42, 69)(43, 68)(44, 67)(45, 66)(46, 65)(47, 64)(48, 63)(49, 62)(50, 61)(51, 60)(52, 59)(53, 58)(54, 57)(55, 56)(111, 218)(112, 217)(113, 216)(114, 215)(115, 214)(116, 213)(117, 212)(118, 211)(119, 210)(120, 209)(121, 208)(122, 207)(123, 206)(124, 205)(125, 204)(126, 203)(127, 202)(128, 201)(129, 200)(130, 199)(131, 198)(132, 197)(133, 196)(134, 195)(135, 194)(136, 193)(137, 192)(138, 191)(139, 190)(140, 189)(141, 188)(142, 187)(143, 186)(144, 185)(145, 184)(146, 183)(147, 182)(148, 181)(149, 180)(150, 179)(151, 178)(152, 177)(153, 176)(154, 175)(155, 174)(156, 173)(157, 172)(158, 171)(159, 170)(160, 169)(161, 168)(162, 167)(163, 166)(164, 165)
e8: (104, 213)
f8: (90, 199)
g8: (82, 191)
h8: (49, 158)
m8: (103, 212)
n9: (37, 146)
a9: (15, 124)
b9: (106, 215)
c9: (77, 186)
d9: (99, 208)
e9: (33, 142)
f9: (44, 153)
g9: (30, 139)
h9: (42, 151)
m9: (64, 173)
n10: (95, 204)
a10: (29, 138)
b10: (22, 131)
c10: (63, 172)
d10: (11, 120)
e10: (18, 127)
f10: (7, 116)
g10: (21, 130)
h10: (87, 196)
m10: (98, 207)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 218, 1 ]
218
-1 111 2 218 109
-2 110 1 112 3
-3 111 2 113 4
-4 112 3 114 5
-5 113 4 115 6
-6 114 5 116 7
-7 115 6 117 8
-8 116 7 118 9
-9 117 8 119 10
-10 11 118 9 120
-11 121 12 119 10
-12 11 122 13 120
-13 121 12 123 14
-14 122 13 124 15
-15 123 14 125 16
-16 124 15 126 17
-17 125 16 127 18
-18 126 17 128 19
-19 127 18 129 20
-20 128 19 130 21
-21 22 129 20 131
-22 132 23 130 21
-23 22 133 24 131
-24 132 23 134 25
-25 133 24 135 26
-26 134 25 136 27
-27 135 26 137 28
-28 136 27 138 29
-29 137 28 139 30
-30 138 29 140 31
-31 139 30 141 32
-32 33 140 31 142
-33 143 34 141 32
-34 33 144 35 142
-35 143 34 145 36
-36 144 35 146 37
-37 145 36 147 38
-38 146 37 148 39
-39 147 38 149 40
-40 148 39 150 41
-41 149 40 151 42
-42 150 41 152 43
-43 44 151 42 153
-44 154 45 152 43
-45 44 155 46 153
-46 154 45 156 47
-47 155 46 157 48
-48 156 47 158 49
-49 157 48 159 50
-50 158 49 160 51
-51 159 50 161 52
-52 160 51 162 53
-53 161 52 163 54
-54 55 162 53 164
-55 165 56 163 54
-56 55 166 57 164
-57 165 56 167 58
-58 166 57 168 59
-59 167 58 169 60
-60 168 59 170 61
-61 169 60 171 62
-62 170 61 172 63
-63 171 62 173 64
-64 172 63 174 65
-65 66 173 64 175
-66 176 67 174 65
-67 66 177 68 175
-68 176 67 178 69
-69 177 68 179 70
-70 178 69 180 71
-71 179 70 181 72
-72 180 71 182 73
-73 181 72 183 74
-74 182 73 184 75
-75 183 74 185 76
-76 77 184 75 186
-77 187 78 185 76
-78 77 188 79 186
-79 187 78 189 80
-80 188 79 190 81
-81 189 80 191 82
-82 190 81 192 83
-83 191 82 193 84
-84 192 83 194 85
-85 193 84 195 86
-86 194 85 196 87
-87 88 195 86 197
-88 198 89 196 87
-89 88 199 90 197
-90 198 89 200 91
-91 199 90 201 92
-92 200 91 202 93
-93 201 92 203 94
-94 202 93 204 95
-95 203 94 205 96
-96 204 95 206 97
-97 205 96 207 98
-98 99 206 97 208
-99 209 100 207 98
-100 99 210 101 208
-101 209 100 211 102
-102 210 101 212 103
-103 211 102 213 104
-104 212 103 214 105
-105 213 104 215 106
-106 214 105 216 107
-107 215 106 217 108
-108 216 107 218 109
-109 110 1 217 108
-110 111 2 218 109
-111 110 1 112 3
-112 111 2 113 4
-113 112 3 114 5
-114 113 4 115 6
-115 114 5 116 7
-116 115 6 117 8
-117 116 7 118 9
-118 117 8 119 10
-119 11 118 9 120
-120 121 12 119 10
-121 11 122 13 120
-122 121 12 123 14
-123 122 13 124 15
-124 123 14 125 16
-125 124 15 126 17
-126 125 16 127 18
-127 126 17 128 19
-128 127 18 129 20
-129 128 19 130 21
-130 22 129 20 131
-131 132 23 130 21
-132 22 133 24 131
-133 132 23 134 25
-134 133 24 135 26
-135 134 25 136 27
-136 135 26 137 28
-137 136 27 138 29
-138 137 28 139 30
-139 138 29 140 31
-140 139 30 141 32
-141 33 140 31 142
-142 143 34 141 32
-143 33 144 35 142
-144 143 34 145 36
-145 144 35 146 37
-146 145 36 147 38
-147 146 37 148 39
-148 147 38 149 40
-149 148 39 150 41
-150 149 40 151 42
-151 150 41 152 43
-152 44 151 42 153
-153 154 45 152 43
-154 44 155 46 153
-155 154 45 156 47
-156 155 46 157 48
-157 156 47 158 49
-158 157 48 159 50
-159 158 49 160 51
-160 159 50 161 52
-161 160 51 162 53
-162 161 52 163 54
-163 55 162 53 164
-164 165 56 163 54
-165 55 166 57 164
-166 165 56 167 58
-167 166 57 168 59
-168 167 58 169 60
-169 168 59 170 61
-170 169 60 171 62
-171 170 61 172 63
-172 171 62 173 64
-173 172 63 174 65
-174 66 173 64 175
-175 176 67 174 65
-176 66 177 68 175
-177 176 67 178 69
-178 177 68 179 70
-179 178 69 180 71
-180 179 70 181 72
-181 180 71 182 73
-182 181 72 183 74
-183 182 73 184 75
-184 183 74 185 76
-185 77 184 75 186
-186 187 78 185 76
-187 77 188 79 186
-188 187 78 189 80
-189 188 79 190 81
-190 189 80 191 82
-191 190 81 192 83
-192 191 82 193 84
-193 192 83 194 85
-194 193 84 195 86
-195 194 85 196 87
-196 88 195 86 197
-197 198 89 196 87
-198 88 199 90 197
-199 198 89 200 91
-200 199 90 201 92
-201 200 91 202 93
-202 201 92 203 94
-203 202 93 204 95
-204 203 94 205 96
-205 204 95 206 97
-206 205 96 207 98
-207 99 206 97 208
-208 209 100 207 98
-209 99 210 101 208
-210 209 100 211 102
-211 210 101 212 103
-212 211 102 213 104
-213 212 103 214 105
-214 213 104 215 106
-215 214 105 216 107
-216 215 106 217 108
-217 216 107 218 109
-218 110 1 217 108
0

**************