[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 218, 2 ] =
C_218(1,33).
(I) Following is a form readable by MAGMA:
g:=Graph<218|{ {2, 3}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208,
209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197},
{194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182,
183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171},
{168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156,
157}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70,
71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54,
55}, {52, 53}, {50, 51}, {48, 49}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29},
{30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45},
{46, 47}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99},
{100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112,
113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125},
{126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138,
139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151},
{152, 153}, {154, 155}, {1, 2}, {217, 218}, {213, 214}, {209, 210}, {205, 206},
{201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177,
178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {85, 86}, {81,
82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49,
50}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33,
34}, {37, 38}, {41, 42}, {45, 46}, {89, 90}, {93, 94}, {97, 98}, {101, 102},
{105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129,
130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154},
{3, 4}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172},
{163, 164}, {155, 156}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11,
12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108},
{115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {7, 8}, {215, 216},
{199, 200}, {183, 184}, {167, 168}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87,
88}, {103, 104}, {119, 120}, {135, 136}, {151, 152}, {15, 16}, {207, 208}, {175,
176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {2, 35}, {158, 191}, {156,
189}, {154, 187}, {84, 117}, {82, 115}, {80, 113}, {78, 111}, {76, 109}, {74,
107}, {72, 105}, {70, 103}, {68, 101}, {66, 99}, {64, 97}, {4, 37}, {6, 39}, {8,
41}, {10, 43}, {12, 45}, {14, 47}, {16, 49}, {18, 51}, {20, 53}, {22, 55}, {24,
57}, {26, 59}, {28, 61}, {30, 63}, {86, 119}, {88, 121}, {90, 123}, {92, 125},
{94, 127}, {128, 161}, {130, 163}, {132, 165}, {134, 167}, {136, 169}, {138,
171}, {140, 173}, {142, 175}, {144, 177}, {146, 179}, {148, 181}, {150, 183},
{152, 185}, {1, 34}, {157, 190}, {81, 114}, {77, 110}, {73, 106}, {69, 102},
{65, 98}, {5, 38}, {9, 42}, {13, 46}, {17, 50}, {21, 54}, {25, 58}, {29, 62},
{85, 118}, {89, 122}, {93, 126}, {129, 162}, {133, 166}, {137, 170}, {141, 174},
{145, 178}, {149, 182}, {153, 186}, {3, 36}, {155, 188}, {83, 116}, {75, 108},
{67, 100}, {11, 44}, {19, 52}, {27, 60}, {91, 124}, {131, 164}, {139, 172},
{147, 180}, {7, 40}, {71, 104}, {23, 56}, {87, 120}, {135, 168}, {151, 184},
{15, 48}, {159, 160}, {79, 112}, {31, 32}, {95, 96}, {143, 176}, {31, 64}, {159,
192}, {63, 96}, {32, 65}, {184, 217}, {182, 215}, {180, 213}, {178, 211}, {176,
209}, {174, 207}, {172, 205}, {170, 203}, {168, 201}, {166, 199}, {164, 197},
{162, 195}, {160, 193}, {62, 95}, {60, 93}, {58, 91}, {56, 89}, {54, 87}, {52,
85}, {50, 83}, {48, 81}, {46, 79}, {34, 67}, {36, 69}, {38, 71}, {40, 73}, {42,
75}, {44, 77}, {33, 66}, {185, 218}, {181, 214}, {177, 210}, {173, 206}, {169,
202}, {165, 198}, {161, 194}, {61, 94}, {57, 90}, {53, 86}, {49, 82}, {37, 70},
{41, 74}, {45, 78}, {35, 68}, {179, 212}, {171, 204}, {163, 196}, {59, 92}, {51,
84}, {43, 76}, {39, 72}, {183, 216}, {167, 200}, {55, 88}, {47, 80}, {191, 192},
{175, 208}, {63, 64}, {2, 187}, {4, 189}, {6, 191}, {1, 186}, {5, 190}, {3,
188}, {7, 192}, {15, 200}, {23, 208}, {31, 216}, {8, 193}, {10, 195}, {12, 197},
{14, 199}, {24, 209}, {26, 211}, {28, 213}, {30, 215}, {9, 194}, {13, 198}, {25,
210}, {29, 214}, {11, 196}, {27, 212}, {16, 201}, {18, 203}, {20, 205}, {22,
207}, {1, 218}, {17, 202}, {21, 206}, {19, 204}, {95, 128}, {127, 160}, {96,
129}, {98, 131}, {100, 133}, {102, 135}, {104, 137}, {106, 139}, {108, 141},
{110, 143}, {112, 145}, {114, 147}, {116, 149}, {118, 151}, {120, 153}, {122,
155}, {124, 157}, {126, 159}, {97, 130}, {101, 134}, {105, 138}, {109, 142},
{113, 146}, {117, 150}, {121, 154}, {125, 158}, {99, 132}, {107, 140}, {115,
148}, {123, 156}, {103, 136}, {119, 152}, {32, 217}, {33, 218}, {111, 144},
{127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 34, 218, 186)(3, 67, 217, 153)(4, 100, 216, 120)(5, 133, 215, 87)(6, 166,
214, 54)(7, 199, 213, 21)(8, 14, 212, 206)(9, 47, 211, 173)(10, 80, 210,
140)(11, 113, 209, 107)(12, 146, 208, 74)(13, 179, 207, 41)(15, 27, 205,
193)(16, 60, 204, 160)(17, 93, 203, 127)(18, 126, 202, 94)(19, 159, 201, 61)(20,
192, 200, 28)(22, 40, 198, 180)(23, 73, 197, 147)(24, 106, 196, 114)(25, 139,
195, 81)(26, 172, 194, 48)(29, 53, 191, 167)(30, 86, 190, 134)(31, 119, 189,
101)(32, 152, 188, 68)(33, 185, 187, 35)(36, 66, 184, 154)(37, 99, 183, 121)(38,
132, 182, 88)(39, 165, 181, 55)(42, 46, 178, 174)(43, 79, 177, 141)(44, 112,
176, 108)(45, 145, 175, 75)(49, 59, 171, 161)(50, 92, 170, 128)(51, 125, 169,
95)(52, 158, 168, 62)(56, 72, 164, 148)(57, 105, 163, 115)(58, 138, 162, 82)(63,
85, 157, 135)(64, 118, 156, 102)(65, 151, 155, 69)(70, 98, 150, 122)(71, 131,
149, 89)(76, 78, 144, 142)(77, 111, 143, 109)(83, 91, 137, 129)(84, 124, 136,
96)(90, 104, 130, 116)(97, 117, 123, 103) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218)
C4[ 218, 2 ]
218
-1 34 2 218 186
-2 187 1 35 3
-3 188 2 36 4
-4 189 3 37 5
-5 190 4 38 6
-6 191 5 39 7
-7 192 6 40 8
-8 193 7 41 9
-9 194 8 42 10
-10 11 195 9 43
-11 44 12 196 10
-12 11 45 13 197
-13 198 12 46 14
-14 199 13 47 15
-15 200 14 48 16
-16 201 15 49 17
-17 202 16 50 18
-18 203 17 51 19
-19 204 18 52 20
-20 205 19 53 21
-21 22 206 20 54
-22 55 23 207 21
-23 22 56 24 208
-24 209 23 57 25
-25 210 24 58 26
-26 211 25 59 27
-27 212 26 60 28
-28 213 27 61 29
-29 214 28 62 30
-30 215 29 63 31
-31 216 30 64 32
-32 33 217 31 65
-33 66 34 218 32
-34 33 1 67 35
-35 34 2 68 36
-36 35 3 69 37
-37 36 4 70 38
-38 37 5 71 39
-39 38 6 72 40
-40 39 7 73 41
-41 40 8 74 42
-42 41 9 75 43
-43 44 42 10 76
-44 11 77 45 43
-45 44 12 78 46
-46 45 13 79 47
-47 46 14 80 48
-48 47 15 81 49
-49 48 16 82 50
-50 49 17 83 51
-51 50 18 84 52
-52 51 19 85 53
-53 52 20 86 54
-54 55 53 21 87
-55 22 88 56 54
-56 55 23 89 57
-57 56 24 90 58
-58 57 25 91 59
-59 58 26 92 60
-60 59 27 93 61
-61 60 28 94 62
-62 61 29 95 63
-63 62 30 96 64
-64 63 31 97 65
-65 66 64 32 98
-66 33 99 67 65
-67 66 34 100 68
-68 67 35 101 69
-69 68 36 102 70
-70 69 37 103 71
-71 70 38 104 72
-72 71 39 105 73
-73 72 40 106 74
-74 73 41 107 75
-75 74 42 108 76
-76 77 75 43 109
-77 44 110 78 76
-78 77 45 111 79
-79 78 46 112 80
-80 79 47 113 81
-81 80 48 114 82
-82 81 49 115 83
-83 82 50 116 84
-84 83 51 117 85
-85 84 52 118 86
-86 85 53 119 87
-87 88 86 54 120
-88 55 121 89 87
-89 88 56 122 90
-90 89 57 123 91
-91 90 58 124 92
-92 91 59 125 93
-93 92 60 126 94
-94 93 61 127 95
-95 94 62 128 96
-96 95 63 129 97
-97 96 64 130 98
-98 99 97 65 131
-99 66 132 100 98
-100 99 67 133 101
-101 100 68 134 102
-102 101 69 135 103
-103 102 70 136 104
-104 103 71 137 105
-105 104 72 138 106
-106 105 73 139 107
-107 106 74 140 108
-108 107 75 141 109
-109 110 108 76 142
-110 77 143 111 109
-111 110 78 144 112
-112 111 79 145 113
-113 112 80 146 114
-114 113 81 147 115
-115 114 82 148 116
-116 115 83 149 117
-117 116 84 150 118
-118 117 85 151 119
-119 118 86 152 120
-120 121 119 87 153
-121 88 154 122 120
-122 121 89 155 123
-123 122 90 156 124
-124 123 91 157 125
-125 124 92 158 126
-126 125 93 159 127
-127 126 94 160 128
-128 127 95 161 129
-129 128 96 162 130
-130 129 97 163 131
-131 132 130 98 164
-132 99 165 133 131
-133 132 100 166 134
-134 133 101 167 135
-135 134 102 168 136
-136 135 103 169 137
-137 136 104 170 138
-138 137 105 171 139
-139 138 106 172 140
-140 139 107 173 141
-141 140 108 174 142
-142 143 141 109 175
-143 110 176 144 142
-144 143 111 177 145
-145 144 112 178 146
-146 145 113 179 147
-147 146 114 180 148
-148 147 115 181 149
-149 148 116 182 150
-150 149 117 183 151
-151 150 118 184 152
-152 151 119 185 153
-153 154 152 120 186
-154 121 187 155 153
-155 154 122 188 156
-156 155 123 189 157
-157 156 124 190 158
-158 157 125 191 159
-159 158 126 192 160
-160 159 127 193 161
-161 160 128 194 162
-162 161 129 195 163
-163 162 130 196 164
-164 165 163 131 197
-165 132 198 166 164
-166 165 133 199 167
-167 166 134 200 168
-168 167 135 201 169
-169 168 136 202 170
-170 169 137 203 171
-171 170 138 204 172
-172 171 139 205 173
-173 172 140 206 174
-174 173 141 207 175
-175 176 174 142 208
-176 143 209 177 175
-177 176 144 210 178
-178 177 145 211 179
-179 178 146 212 180
-180 179 147 213 181
-181 180 148 214 182
-182 181 149 215 183
-183 182 150 216 184
-184 183 151 217 185
-185 184 152 218 186
-186 187 1 185 153
-187 154 188 2 186
-188 187 155 189 3
-189 188 156 190 4
-190 189 157 191 5
-191 190 158 192 6
-192 191 159 193 7
-193 192 160 194 8
-194 193 161 195 9
-195 194 162 196 10
-196 11 195 163 197
-197 198 12 196 164
-198 165 199 13 197
-199 198 166 200 14
-200 199 167 201 15
-201 200 168 202 16
-202 201 169 203 17
-203 202 170 204 18
-204 203 171 205 19
-205 204 172 206 20
-206 205 173 207 21
-207 22 206 174 208
-208 209 23 207 175
-209 176 210 24 208
-210 209 177 211 25
-211 210 178 212 26
-212 211 179 213 27
-213 212 180 214 28
-214 213 181 215 29
-215 214 182 216 30
-216 215 183 217 31
-217 216 184 218 32
-218 33 1 217 185
0