C4graphGraph forms for C4 [ 219, 1 ] = C_219(1,74)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 219, 1 ] = C_219(1,74).

(I) Following is a form readable by MAGMA:

g:=Graph<219|{ {2, 3}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {1, 2}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {3, 4}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {1, 75}, {145, 219}, {144, 218}, {53, 127}, {52, 126}, {49, 123}, {48, 122}, {4, 78}, {5, 79}, {16, 90}, {17, 91}, {20, 94}, {21, 95}, {32, 106}, {33, 107}, {36, 110}, {37, 111}, {128, 202}, {129, 203}, {132, 206}, {133, 207}, {2, 76}, {51, 125}, {50, 124}, {3, 77}, {18, 92}, {19, 93}, {34, 108}, {35, 109}, {130, 204}, {131, 205}, {6, 80}, {143, 217}, {142, 216}, {47, 121}, {46, 120}, {7, 81}, {14, 88}, {15, 89}, {38, 112}, {39, 113}, {134, 208}, {135, 209}, {8, 82}, {141, 215}, {140, 214}, {137, 211}, {45, 119}, {44, 118}, {41, 115}, {9, 83}, {12, 86}, {13, 87}, {40, 114}, {136, 210}, {10, 84}, {139, 213}, {138, 212}, {43, 117}, {42, 116}, {11, 85}, {22, 96}, {23, 97}, {30, 104}, {31, 105}, {24, 98}, {25, 99}, {28, 102}, {29, 103}, {26, 100}, {27, 101}, {63, 64}, {191, 192}, {2, 147}, {70, 215}, {68, 213}, {66, 211}, {64, 209}, {46, 191}, {44, 189}, {42, 187}, {4, 149}, {6, 151}, {8, 153}, {10, 155}, {12, 157}, {14, 159}, {32, 177}, {34, 179}, {36, 181}, {38, 183}, {40, 185}, {72, 217}, {74, 219}, {1, 146}, {69, 214}, {65, 210}, {45, 190}, {41, 186}, {5, 150}, {9, 154}, {13, 158}, {33, 178}, {37, 182}, {73, 218}, {3, 148}, {67, 212}, {43, 188}, {11, 156}, {35, 180}, {7, 152}, {39, 184}, {71, 216}, {15, 160}, {31, 176}, {16, 161}, {18, 163}, {20, 165}, {22, 167}, {24, 169}, {26, 171}, {28, 173}, {30, 175}, {17, 162}, {21, 166}, {25, 170}, {29, 174}, {54, 128}, {63, 137}, {62, 136}, {55, 129}, {118, 192}, {119, 193}, {126, 200}, {127, 201}, {19, 164}, {27, 172}, {56, 130}, {61, 135}, {60, 134}, {57, 131}, {120, 194}, {121, 195}, {124, 198}, {125, 199}, {58, 132}, {59, 133}, {122, 196}, {123, 197}, {23, 168}, {64, 138}, {69, 143}, {68, 142}, {65, 139}, {80, 154}, {81, 155}, {84, 158}, {85, 159}, {96, 170}, {97, 171}, {100, 174}, {101, 175}, {112, 186}, {113, 187}, {116, 190}, {117, 191}, {66, 140}, {67, 141}, {82, 156}, {83, 157}, {98, 172}, {99, 173}, {114, 188}, {115, 189}, {70, 144}, {71, 145}, {78, 152}, {79, 153}, {102, 176}, {103, 177}, {110, 184}, {111, 185}, {1, 219}, {72, 146}, {73, 147}, {76, 150}, {77, 151}, {104, 178}, {105, 179}, {108, 182}, {109, 183}, {74, 148}, {75, 149}, {106, 180}, {107, 181}, {47, 192}, {63, 208}, {48, 193}, {62, 207}, {60, 205}, {58, 203}, {56, 201}, {54, 199}, {52, 197}, {50, 195}, {49, 194}, {61, 206}, {57, 202}, {53, 198}, {86, 160}, {87, 161}, {94, 168}, {95, 169}, {51, 196}, {59, 204}, {88, 162}, {89, 163}, {92, 166}, {93, 167}, {90, 164}, {91, 165}, {55, 200}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 75)(3, 149)(5, 78)(6, 152)(8, 81)(9, 155)(11, 84)(12, 158)(14, 87)(15, 161)(17, 90)(18, 164)(20, 93)(21, 167)(23, 96)(24, 170)(26, 99)(27, 173)(29, 102)(30, 176)(32, 105)(33, 179)(35, 108)(36, 182)(38, 111)(39, 185)(41, 114)(42, 188)(44, 117)(45, 191)(47, 120)(48, 194)(50, 123)(51, 197)(53, 126)(54, 200)(56, 129)(57, 203)(59, 132)(60, 206)(62, 135)(63, 209)(65, 138)(66, 212)(68, 141)(69, 215)(71, 144)(72, 218)(74, 147)(77, 150)(80, 153)(83, 156)(86, 159)(89, 162)(92, 165)(95, 168)(98, 171)(101, 174)(104, 177)(107, 180)(110, 183)(113, 186)(116, 189)(119, 192)(122, 195)(125, 198)(128, 201)(131, 204)(134, 207)(137, 210)(140, 213)(143, 216)(146, 219)
b: (2, 146)(3, 72)(4, 217)(5, 143)(6, 69)(7, 214)(8, 140)(9, 66)(10, 211)(11, 137)(12, 63)(13, 208)(14, 134)(15, 60)(16, 205)(17, 131)(18, 57)(19, 202)(20, 128)(21, 54)(22, 199)(23, 125)(24, 51)(25, 196)(26, 122)(27, 48)(28, 193)(29, 119)(30, 45)(31, 190)(32, 116)(33, 42)(34, 187)(35, 113)(36, 39)(37, 184)(38, 110)(40, 181)(41, 107)(43, 178)(44, 104)(46, 175)(47, 101)(49, 172)(50, 98)(52, 169)(53, 95)(55, 166)(56, 92)(58, 163)(59, 89)(61, 160)(62, 86)(64, 157)(65, 83)(67, 154)(68, 80)(70, 151)(71, 77)(73, 148)(75, 219)(76, 145)(78, 216)(79, 142)(81, 213)(82, 139)(84, 210)(85, 136)(87, 207)(88, 133)(90, 204)(91, 130)(93, 201)(94, 127)(96, 198)(97, 124)(99, 195)(100, 121)(102, 192)(103, 118)(105, 189)(106, 115)(108, 186)(109, 112)(111, 183)(114, 180)(117, 177)(120, 174)(123, 171)(126, 168)(129, 165)(132, 162)(135, 159)(138, 156)(141, 153)(144, 150)(149, 218)(152, 215)(155, 212)(158, 209)(161, 206)(164, 203)(167, 200)(170, 197)(173, 194)(176, 191)(179, 188)(182, 185)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 219, 1 ]
219
-1 2 146 75 219
-2 1 3 147 76
-3 77 2 4 148
-4 78 3 5 149
-5 79 4 6 150
-6 80 5 7 151
-7 81 6 8 152
-8 82 7 9 153
-9 154 83 8 10
-10 11 155 84 9
-11 12 156 85 10
-12 11 13 157 86
-13 12 14 158 87
-14 88 13 15 159
-15 89 14 16 160
-16 90 15 17 161
-17 91 16 18 162
-18 92 17 19 163
-19 93 18 20 164
-20 165 94 19 21
-21 22 166 95 20
-22 23 167 96 21
-23 22 24 168 97
-24 23 25 169 98
-25 99 24 26 170
-26 100 25 27 171
-27 101 26 28 172
-28 102 27 29 173
-29 103 28 30 174
-30 104 29 31 175
-31 176 105 30 32
-32 33 177 106 31
-33 34 178 107 32
-34 33 35 179 108
-35 34 36 180 109
-36 110 35 37 181
-37 111 36 38 182
-38 112 37 39 183
-39 113 38 40 184
-40 114 39 41 185
-41 115 40 42 186
-42 187 116 41 43
-43 44 188 117 42
-44 45 189 118 43
-45 44 46 190 119
-46 45 47 191 120
-47 121 46 48 192
-48 122 47 49 193
-49 123 48 50 194
-50 124 49 51 195
-51 125 50 52 196
-52 126 51 53 197
-53 198 127 52 54
-54 55 199 128 53
-55 56 200 129 54
-56 55 57 201 130
-57 56 58 202 131
-58 132 57 59 203
-59 133 58 60 204
-60 134 59 61 205
-61 135 60 62 206
-62 136 61 63 207
-63 137 62 64 208
-64 209 138 63 65
-65 66 210 139 64
-66 67 211 140 65
-67 66 68 212 141
-68 67 69 213 142
-69 143 68 70 214
-70 144 69 71 215
-71 145 70 72 216
-72 146 71 73 217
-73 147 72 74 218
-74 148 73 75 219
-75 1 149 74 76
-76 77 2 150 75
-77 78 3 151 76
-78 77 79 4 152
-79 78 80 5 153
-80 154 79 81 6
-81 155 80 82 7
-82 156 81 83 8
-83 157 82 84 9
-84 158 83 85 10
-85 11 159 84 86
-86 12 160 85 87
-87 88 13 161 86
-88 89 14 162 87
-89 88 90 15 163
-90 89 91 16 164
-91 165 90 92 17
-92 166 91 93 18
-93 167 92 94 19
-94 168 93 95 20
-95 169 94 96 21
-96 22 170 95 97
-97 23 171 96 98
-98 99 24 172 97
-99 100 25 173 98
-100 99 101 26 174
-101 100 102 27 175
-102 176 101 103 28
-103 177 102 104 29
-104 178 103 105 30
-105 179 104 106 31
-106 180 105 107 32
-107 33 181 106 108
-108 34 182 107 109
-109 110 35 183 108
-110 111 36 184 109
-111 110 112 37 185
-112 111 113 38 186
-113 187 112 114 39
-114 188 113 115 40
-115 189 114 116 41
-116 190 115 117 42
-117 191 116 118 43
-118 44 192 117 119
-119 45 193 118 120
-120 121 46 194 119
-121 122 47 195 120
-122 121 123 48 196
-123 122 124 49 197
-124 198 123 125 50
-125 199 124 126 51
-126 200 125 127 52
-127 201 126 128 53
-128 202 127 129 54
-129 55 203 128 130
-130 56 204 129 131
-131 132 57 205 130
-132 133 58 206 131
-133 132 134 59 207
-134 133 135 60 208
-135 209 134 136 61
-136 210 135 137 62
-137 211 136 138 63
-138 212 137 139 64
-139 213 138 140 65
-140 66 214 139 141
-141 67 215 140 142
-142 143 68 216 141
-143 144 69 217 142
-144 143 145 70 218
-145 144 146 71 219
-146 1 145 147 72
-147 2 146 148 73
-148 3 147 149 74
-149 4 148 150 75
-150 5 149 151 76
-151 77 6 150 152
-152 78 7 151 153
-153 154 79 8 152
-154 155 80 9 153
-155 154 156 81 10
-156 11 155 157 82
-157 12 156 158 83
-158 13 157 159 84
-159 14 158 160 85
-160 15 159 161 86
-161 16 160 162 87
-162 88 17 161 163
-163 89 18 162 164
-164 165 90 19 163
-165 166 91 20 164
-166 165 167 92 21
-167 22 166 168 93
-168 23 167 169 94
-169 24 168 170 95
-170 25 169 171 96
-171 26 170 172 97
-172 27 171 173 98
-173 99 28 172 174
-174 100 29 173 175
-175 176 101 30 174
-176 177 102 31 175
-177 176 178 103 32
-178 33 177 179 104
-179 34 178 180 105
-180 35 179 181 106
-181 36 180 182 107
-182 37 181 183 108
-183 38 182 184 109
-184 110 39 183 185
-185 111 40 184 186
-186 187 112 41 185
-187 188 113 42 186
-188 187 189 114 43
-189 44 188 190 115
-190 45 189 191 116
-191 46 190 192 117
-192 47 191 193 118
-193 48 192 194 119
-194 49 193 195 120
-195 121 50 194 196
-196 122 51 195 197
-197 198 123 52 196
-198 199 124 53 197
-199 198 200 125 54
-200 55 199 201 126
-201 56 200 202 127
-202 57 201 203 128
-203 58 202 204 129
-204 59 203 205 130
-205 60 204 206 131
-206 132 61 205 207
-207 133 62 206 208
-208 209 134 63 207
-209 210 135 64 208
-210 209 211 136 65
-211 66 210 212 137
-212 67 211 213 138
-213 68 212 214 139
-214 69 213 215 140
-215 70 214 216 141
-216 71 215 217 142
-217 143 72 216 218
-218 144 73 217 219
-219 1 145 74 218
0

**************