C4graphGraph forms for C4 [ 220, 1 ] = W(110,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 220, 1 ] = W(110,2).

(I) Following is a form readable by MAGMA:

g:=Graph<220|{ {2, 3}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {1, 2}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3, 4}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {159, 160}, {95, 96}, {2, 111}, {16, 125}, {18, 127}, {1, 110}, {16, 127}, {17, 126}, {1, 112}, {3, 114}, {5, 116}, {7, 118}, {9, 120}, {11, 122}, {13, 124}, {15, 126}, {2, 113}, {3, 112}, {6, 117}, {7, 116}, {10, 121}, {11, 120}, {14, 125}, {15, 124}, {4, 113}, {6, 115}, {12, 121}, {14, 123}, {4, 115}, {5, 114}, {12, 123}, {13, 122}, {8, 117}, {10, 119}, {8, 119}, {191, 192}, {63, 64}, {9, 118}, {17, 128}, {63, 174}, {61, 172}, {59, 170}, {57, 168}, {55, 166}, {53, 164}, {51, 162}, {49, 160}, {19, 130}, {21, 132}, {23, 134}, {25, 136}, {27, 138}, {29, 140}, {31, 142}, {81, 192}, {83, 194}, {85, 196}, {87, 198}, {89, 200}, {91, 202}, {93, 204}, {95, 206}, {18, 129}, {63, 172}, {62, 173}, {59, 168}, {58, 169}, {55, 164}, {54, 165}, {51, 160}, {50, 161}, {19, 128}, {22, 133}, {23, 132}, {26, 137}, {27, 136}, {30, 141}, {31, 140}, {82, 193}, {83, 192}, {86, 197}, {87, 196}, {90, 201}, {91, 200}, {94, 205}, {95, 204}, {20, 129}, {62, 171}, {60, 169}, {54, 163}, {52, 161}, {22, 131}, {28, 137}, {30, 139}, {84, 193}, {86, 195}, {92, 201}, {94, 203}, {20, 131}, {61, 170}, {60, 171}, {53, 162}, {52, 163}, {21, 130}, {28, 139}, {29, 138}, {84, 195}, {85, 194}, {92, 203}, {93, 202}, {24, 133}, {58, 167}, {56, 165}, {26, 135}, {88, 197}, {90, 199}, {24, 135}, {57, 166}, {56, 167}, {25, 134}, {88, 199}, {89, 198}, {32, 141}, {50, 159}, {48, 157}, {34, 143}, {96, 205}, {98, 207}, {32, 143}, {49, 158}, {48, 159}, {33, 142}, {96, 207}, {97, 206}, {33, 144}, {47, 158}, {45, 156}, {43, 154}, {35, 146}, {37, 148}, {39, 150}, {41, 152}, {97, 208}, {99, 210}, {101, 212}, {103, 214}, {105, 216}, {107, 218}, {109, 220}, {34, 145}, {47, 156}, {46, 157}, {43, 152}, {35, 144}, {38, 149}, {39, 148}, {42, 153}, {98, 209}, {99, 208}, {102, 213}, {103, 212}, {106, 217}, {107, 216}, {111, 220}, {36, 145}, {46, 155}, {44, 153}, {38, 147}, {100, 209}, {102, 211}, {108, 217}, {110, 219}, {36, 147}, {45, 154}, {44, 155}, {37, 146}, {100, 211}, {101, 210}, {108, 219}, {109, 218}, {40, 149}, {42, 151}, {104, 213}, {106, 215}, {40, 151}, {41, 150}, {104, 215}, {105, 214}, {1, 220}, {64, 173}, {66, 175}, {80, 189}, {82, 191}, {64, 175}, {65, 174}, {80, 191}, {81, 190}, {65, 176}, {69, 180}, {67, 178}, {71, 182}, {73, 184}, {75, 186}, {77, 188}, {79, 190}, {66, 177}, {67, 176}, {70, 181}, {71, 180}, {74, 185}, {75, 184}, {78, 189}, {79, 188}, {68, 177}, {70, 179}, {76, 185}, {78, 187}, {68, 179}, {69, 178}, {76, 187}, {77, 186}, {72, 181}, {74, 183}, {72, 183}, {127, 128}, {73, 182} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (27, 137)
b: (107, 217)
c: (70, 180)
d: (72, 182)
e: (47, 157)
f: (101, 211)
g: (78, 188)
h: (24, 134)
m: (55, 165)
n1: (71, 181)
a1: (21, 131)
b1: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110)(111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220)
c1: (68, 178)
d1: (99, 209)
e1: (50, 160)
f1: (25, 135)
g1: (85, 195)
h1: (18, 128)
m1: (90, 200)
n2: (105, 215)
a2: (97, 207)
b2: (102, 212)
c2: (38, 148)
d2: (95, 205)
e2: (64, 174)
f2: (46, 156)
g2: (48, 158)
h2: (108, 218)
m2: (89, 199)
n3: (58, 168)
a3: (32, 142)
b3: (81, 191)
c3: (63, 173)
d3: (49, 159)
e3: (77, 187)
f3: (75, 185)
g3: (98, 208)
h3: (110, 220)
m3: (86, 196)
n4: (8, 118)
a4: (83, 193)
b4: (52, 162)
c4: (2, 110)(3, 109)(4, 108)(5, 107)(6, 106)(7, 105)(8, 104)(9, 103)(10, 102)(11, 101)(12, 100)(13, 99)(14, 98)(15, 97)(16, 96)(17, 95)(18, 94)(19, 93)(20, 92)(21, 91)(22, 90)(23, 89)(24, 88)(25, 87)(26, 86)(27, 85)(28, 84)(29, 83)(30, 82)(31, 81)(32, 80)(33, 79)(34, 78)(35, 77)(36, 76)(37, 75)(38, 74)(39, 73)(40, 72)(41, 71)(42, 70)(43, 69)(44, 68)(45, 67)(46, 66)(47, 65)(48, 64)(49, 63)(50, 62)(51, 61)(52, 60)(53, 59)(54, 58)(55, 57)(112, 220)(113, 219)(114, 218)(115, 217)(116, 216)(117, 215)(118, 214)(119, 213)(120, 212)(121, 211)(122, 210)(123, 209)(124, 208)(125, 207)(126, 206)(127, 205)(128, 204)(129, 203)(130, 202)(131, 201)(132, 200)(133, 199)(134, 198)(135, 197)(136, 196)(137, 195)(138, 194)(139, 193)(140, 192)(141, 191)(142, 190)(143, 189)(144, 188)(145, 187)(146, 186)(147, 185)(148, 184)(149, 183)(150, 182)(151, 181)(152, 180)(153, 179)(154, 178)(155, 177)(156, 176)(157, 175)(158, 174)(159, 173)(160, 172)(161, 171)(162, 170)(163, 169)(164, 168)(165, 167)
d4: (106, 216)
e4: (41, 151)
f4: (20, 130)
g4: (51, 161)
h4: (15, 125)
m4: (23, 133)
n5: (80, 190)
a5: (9, 119)
b5: (45, 155)
c5: (87, 197)
d5: (56, 166)
e5: (11, 121)
f5: (2, 112)
g5: (44, 154)
h5: (36, 146)
m5: (104, 214)
n6: (76, 186)
a6: (13, 123)
b6: (29, 139)
c6: (92, 202)
d6: (10, 120)
e6: (28, 138)
f6: (59, 169)
g6: (6, 116)
h6: (34, 144)
m6: (43, 153)
n7: (67, 177)
a7: (42, 152)
b7: (79, 189)
c7: (4, 114)
d7: (103, 213)
e7: (30, 140)
f7: (61, 171)
g7: (88, 198)
h7: (22, 132)
m7: (26, 136)
n8: (53, 163)
a8: (57, 167)
b8: (16, 126)
c8: (7, 117)
d8: (31, 141)
e8: (91, 201)
f8: (60, 170)
g8: (69, 179)
h8: (100, 210)
m8: (12, 122)
n9: (84, 194)
a9: (35, 145)
b9: (39, 149)
c9: (82, 192)
d9: (93, 203)
e9: (62, 172)
f9: (73, 183)
g9: (3, 113)
h9: (66, 176)
m9: (37, 147)
n10: (17, 127)
a10: (19, 129)
b10: (94, 204)
c10: (109, 219)
d10: (65, 175)
e10: (14, 124)
f10: (33, 143)
g10: (74, 184)
h10: (5, 115)
m10: (40, 150)
n11: (96, 206)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 220, 1 ]
220
-1 110 220 2 112
-2 1 111 3 113
-3 2 112 4 114
-4 3 113 5 115
-5 4 114 6 116
-6 5 115 7 117
-7 6 116 8 118
-8 7 117 9 119
-9 8 118 10 120
-10 11 121 9 119
-11 12 122 10 120
-12 11 121 13 123
-13 12 122 14 124
-14 13 123 15 125
-15 14 124 16 126
-16 15 125 17 127
-17 16 126 18 128
-18 17 127 19 129
-19 18 128 20 130
-20 19 129 21 131
-21 22 132 20 130
-22 23 133 21 131
-23 22 132 24 134
-24 23 133 25 135
-25 24 134 26 136
-26 25 135 27 137
-27 26 136 28 138
-28 27 137 29 139
-29 28 138 30 140
-30 29 139 31 141
-31 30 140 32 142
-32 33 143 31 141
-33 34 144 32 142
-34 33 143 35 145
-35 34 144 36 146
-36 35 145 37 147
-37 36 146 38 148
-38 37 147 39 149
-39 38 148 40 150
-40 39 149 41 151
-41 40 150 42 152
-42 41 151 43 153
-43 44 154 42 152
-44 45 155 43 153
-45 44 154 46 156
-46 45 155 47 157
-47 46 156 48 158
-48 47 157 49 159
-49 48 158 50 160
-50 49 159 51 161
-51 50 160 52 162
-52 51 161 53 163
-53 52 162 54 164
-54 55 165 53 163
-55 56 166 54 164
-56 55 165 57 167
-57 56 166 58 168
-58 57 167 59 169
-59 58 168 60 170
-60 59 169 61 171
-61 60 170 62 172
-62 61 171 63 173
-63 62 172 64 174
-64 63 173 65 175
-65 66 176 64 174
-66 67 177 65 175
-67 66 176 68 178
-68 67 177 69 179
-69 68 178 70 180
-70 69 179 71 181
-71 70 180 72 182
-72 71 181 73 183
-73 72 182 74 184
-74 73 183 75 185
-75 74 184 76 186
-76 77 187 75 185
-77 78 188 76 186
-78 77 187 79 189
-79 78 188 80 190
-80 79 189 81 191
-81 80 190 82 192
-82 81 191 83 193
-83 82 192 84 194
-84 83 193 85 195
-85 84 194 86 196
-86 85 195 87 197
-87 88 198 86 196
-88 89 199 87 197
-89 88 198 90 200
-90 89 199 91 201
-91 90 200 92 202
-92 91 201 93 203
-93 92 202 94 204
-94 93 203 95 205
-95 94 204 96 206
-96 95 205 97 207
-97 96 206 98 208
-98 99 209 97 207
-99 100 210 98 208
-100 99 209 101 211
-101 100 210 102 212
-102 101 211 103 213
-103 102 212 104 214
-104 103 213 105 215
-105 104 214 106 216
-106 105 215 107 217
-107 106 216 108 218
-108 107 217 109 219
-109 110 220 108 218
-110 1 111 109 219
-111 110 220 2 112
-112 1 111 3 113
-113 2 112 4 114
-114 3 113 5 115
-115 4 114 6 116
-116 5 115 7 117
-117 6 116 8 118
-118 7 117 9 119
-119 8 118 10 120
-120 11 121 9 119
-121 12 122 10 120
-122 11 121 13 123
-123 12 122 14 124
-124 13 123 15 125
-125 14 124 16 126
-126 15 125 17 127
-127 16 126 18 128
-128 17 127 19 129
-129 18 128 20 130
-130 19 129 21 131
-131 22 132 20 130
-132 23 133 21 131
-133 22 132 24 134
-134 23 133 25 135
-135 24 134 26 136
-136 25 135 27 137
-137 26 136 28 138
-138 27 137 29 139
-139 28 138 30 140
-140 29 139 31 141
-141 30 140 32 142
-142 33 143 31 141
-143 34 144 32 142
-144 33 143 35 145
-145 34 144 36 146
-146 35 145 37 147
-147 36 146 38 148
-148 37 147 39 149
-149 38 148 40 150
-150 39 149 41 151
-151 40 150 42 152
-152 41 151 43 153
-153 44 154 42 152
-154 45 155 43 153
-155 44 154 46 156
-156 45 155 47 157
-157 46 156 48 158
-158 47 157 49 159
-159 48 158 50 160
-160 49 159 51 161
-161 50 160 52 162
-162 51 161 53 163
-163 52 162 54 164
-164 55 165 53 163
-165 56 166 54 164
-166 55 165 57 167
-167 56 166 58 168
-168 57 167 59 169
-169 58 168 60 170
-170 59 169 61 171
-171 60 170 62 172
-172 61 171 63 173
-173 62 172 64 174
-174 63 173 65 175
-175 66 176 64 174
-176 67 177 65 175
-177 66 176 68 178
-178 67 177 69 179
-179 68 178 70 180
-180 69 179 71 181
-181 70 180 72 182
-182 71 181 73 183
-183 72 182 74 184
-184 73 183 75 185
-185 74 184 76 186
-186 77 187 75 185
-187 78 188 76 186
-188 77 187 79 189
-189 78 188 80 190
-190 79 189 81 191
-191 80 190 82 192
-192 81 191 83 193
-193 82 192 84 194
-194 83 193 85 195
-195 84 194 86 196
-196 85 195 87 197
-197 88 198 86 196
-198 89 199 87 197
-199 88 198 90 200
-200 89 199 91 201
-201 90 200 92 202
-202 91 201 93 203
-203 92 202 94 204
-204 93 203 95 205
-205 94 204 96 206
-206 95 205 97 207
-207 96 206 98 208
-208 99 209 97 207
-209 100 210 98 208
-210 99 209 101 211
-211 100 210 102 212
-212 101 211 103 213
-213 102 212 104 214
-214 103 213 105 215
-215 104 214 106 216
-216 105 215 107 217
-217 106 216 108 218
-218 107 217 109 219
-219 110 220 108 218
-220 1 111 109 219
0

**************