[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 220, 4 ] =
{4,4}_<16,6>.
(I) Following is a form readable by MAGMA:
g:=Graph<220|{ {2, 3}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210,
211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199},
{196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184,
185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173},
{170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158,
159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147},
{144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132,
133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {68, 69}, {66, 67}, {64,
65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48,
49}, {46, 47}, {44, 45}, {42, 43}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13},
{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29},
{30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {70, 71}, {72, 73},
{74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89},
{90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104,
105}, {106, 107}, {108, 109}, {112, 113}, {114, 115}, {116, 117}, {118, 119},
{120, 121}, {122, 123}, {1, 2}, {217, 218}, {213, 214}, {209, 210}, {205, 206},
{201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177,
178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154},
{149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125,
126}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5,
6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37,
38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97,
98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {3,
4}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180},
{171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {67,
68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {75,
76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {7, 8},
{215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {55,
56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {119, 120}, {15, 16},
{207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32},
{159, 160}, {95, 96}, {43, 111}, {59, 127}, {58, 126}, {57, 125}, {56, 124},
{51, 119}, {50, 118}, {49, 117}, {48, 116}, {52, 120}, {55, 123}, {54, 122},
{53, 121}, {44, 112}, {47, 115}, {46, 114}, {45, 113}, {1, 111}, {16, 126}, {17,
127}, {1, 110}, {2, 112}, {3, 113}, {6, 116}, {7, 117}, {10, 120}, {11, 121},
{14, 124}, {15, 125}, {4, 114}, {5, 115}, {12, 122}, {13, 123}, {8, 118}, {9,
119}, {63, 64}, {191, 192}, {18, 128}, {63, 173}, {62, 172}, {59, 169}, {58,
168}, {55, 165}, {54, 164}, {51, 161}, {50, 160}, {19, 129}, {22, 132}, {23,
133}, {26, 136}, {27, 137}, {30, 140}, {31, 141}, {82, 192}, {83, 193}, {86,
196}, {87, 197}, {90, 200}, {91, 201}, {94, 204}, {95, 205}, {20, 130}, {61,
171}, {60, 170}, {53, 163}, {52, 162}, {21, 131}, {28, 138}, {29, 139}, {84,
194}, {85, 195}, {92, 202}, {93, 203}, {24, 134}, {57, 167}, {56, 166}, {25,
135}, {88, 198}, {89, 199}, {32, 142}, {49, 159}, {48, 158}, {33, 143}, {96,
206}, {97, 207}, {1, 179}, {47, 157}, {46, 156}, {43, 153}, {42, 152}, {4, 182},
{5, 183}, {8, 186}, {9, 187}, {12, 190}, {13, 191}, {34, 144}, {35, 145}, {38,
148}, {39, 149}, {98, 208}, {99, 209}, {102, 212}, {103, 213}, {106, 216}, {107,
217}, {110, 220}, {111, 220}, {2, 180}, {45, 155}, {44, 154}, {3, 181}, {10,
188}, {11, 189}, {36, 146}, {37, 147}, {100, 210}, {101, 211}, {108, 218}, {109,
219}, {60, 128}, {63, 131}, {62, 130}, {61, 129}, {6, 184}, {7, 185}, {40, 150},
{41, 151}, {104, 214}, {105, 215}, {64, 132}, {67, 135}, {66, 134}, {65, 133},
{72, 140}, {73, 141}, {74, 142}, {75, 143}, {80, 148}, {81, 149}, {82, 150},
{83, 151}, {88, 156}, {89, 157}, {90, 158}, {91, 159}, {96, 164}, {97, 165},
{98, 166}, {99, 167}, {104, 172}, {105, 173}, {106, 174}, {107, 175}, {68, 136},
{69, 137}, {70, 138}, {71, 139}, {84, 152}, {85, 153}, {86, 154}, {87, 155},
{100, 168}, {101, 169}, {102, 170}, {103, 171}, {14, 192}, {15, 193}, {30, 208},
{31, 209}, {16, 194}, {17, 195}, {20, 198}, {21, 199}, {24, 202}, {25, 203},
{28, 206}, {29, 207}, {18, 196}, {19, 197}, {26, 204}, {27, 205}, {76, 144},
{77, 145}, {78, 146}, {79, 147}, {108, 176}, {109, 177}, {110, 178}, {22, 200},
{23, 201}, {64, 174}, {65, 175}, {80, 190}, {81, 191}, {32, 210}, {67, 177},
{66, 176}, {41, 219}, {33, 211}, {36, 214}, {37, 215}, {40, 218}, {70, 180},
{71, 181}, {74, 184}, {75, 185}, {78, 188}, {79, 189}, {34, 212}, {69, 179},
{68, 178}, {42, 220}, {35, 213}, {76, 186}, {77, 187}, {92, 160}, {93, 161},
{94, 162}, {95, 163}, {38, 216}, {39, 217}, {72, 182}, {73, 183}, {127, 128}
}>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 179)(3, 69)(4, 137)(5, 27)(6, 205)(7, 95)(8, 163)(9, 53)(10, 121)(12,
189)(13, 79)(14, 147)(15, 37)(16, 215)(17, 105)(18, 173)(19, 63)(20, 131)(22,
199)(23, 89)(24, 157)(25, 47)(26, 115)(28, 183)(29, 73)(30, 141)(32, 209)(33,
99)(34, 167)(35, 57)(36, 125)(38, 193)(39, 83)(40, 151)(42, 219)(43, 109)(44,
177)(45, 67)(46, 135)(48, 203)(49, 93)(50, 161)(52, 119)(54, 187)(55, 77)(56,
145)(58, 213)(59, 103)(60, 171)(62, 129)(64, 197)(65, 87)(66, 155)(68, 113)(70,
181)(72, 139)(74, 207)(75, 97)(76, 165)(78, 123)(80, 191)(82, 149)(84, 217)(85,
107)(86, 175)(88, 133)(90, 201)(92, 159)(94, 117)(96, 185)(98, 143)(100,
211)(102, 169)(104, 127)(106, 195)(108, 153)(110, 111)(112, 178)(114, 136)(116,
204)(118, 162)(122, 188)(124, 146)(126, 214)(128, 172)(132, 198)(134, 156)(138,
182)(142, 208)(144, 166)(148, 192)(152, 218)(154, 176)(158, 202)(164, 186)(168,
212)(174, 196)(184, 206)(194, 216) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 110)(3, 109)(4, 108)(5, 107)(6, 106)(7, 105)(8, 104)(9, 103)(10, 102)(11,
101)(12, 100)(13, 99)(14, 98)(15, 97)(16, 96)(17, 95)(18, 94)(19, 93)(20,
92)(21, 91)(22, 90)(23, 89)(24, 88)(25, 87)(26, 86)(27, 85)(28, 84)(29, 83)(30,
82)(31, 81)(32, 80)(33, 79)(34, 78)(35, 77)(36, 76)(37, 75)(38, 74)(39, 73)(40,
72)(41, 71)(42, 70)(43, 69)(44, 68)(45, 67)(46, 66)(47, 65)(48, 64)(49, 63)(50,
62)(51, 61)(52, 60)(53, 59)(54, 58)(55, 57)(111, 179)(112, 178)(113, 177)(114,
176)(115, 175)(116, 174)(117, 173)(118, 172)(119, 171)(120, 170)(121, 169)(122,
168)(123, 167)(124, 166)(125, 165)(126, 164)(127, 163)(128, 162)(129, 161)(130,
160)(131, 159)(132, 158)(133, 157)(134, 156)(135, 155)(136, 154)(137, 153)(138,
152)(139, 151)(140, 150)(141, 149)(142, 148)(143, 147)(144, 146)(180, 220)(181,
219)(182, 218)(183, 217)(184, 216)(185, 215)(186, 214)(187, 213)(188, 212)(189,
211)(190, 210)(191, 209)(192, 208)(193, 207)(194, 206)(195, 205)(196, 204)(197,
203)(198, 202)(199, 201)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110)(111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220)
C4[ 220, 4 ]
220
-1 110 111 2 179
-2 1 112 3 180
-3 2 113 4 181
-4 3 114 5 182
-5 4 115 6 183
-6 5 116 7 184
-7 6 117 8 185
-8 7 118 9 186
-9 187 8 119 10
-10 11 188 9 120
-11 121 12 189 10
-12 11 122 13 190
-13 12 123 14 191
-14 13 124 15 192
-15 14 125 16 193
-16 15 126 17 194
-17 16 127 18 195
-18 17 128 19 196
-19 18 129 20 197
-20 198 19 130 21
-21 22 199 20 131
-22 132 23 200 21
-23 22 133 24 201
-24 23 134 25 202
-25 24 135 26 203
-26 25 136 27 204
-27 26 137 28 205
-28 27 138 29 206
-29 28 139 30 207
-30 29 140 31 208
-31 209 30 141 32
-32 33 210 31 142
-33 143 34 211 32
-34 33 144 35 212
-35 34 145 36 213
-36 35 146 37 214
-37 36 147 38 215
-38 37 148 39 216
-39 38 149 40 217
-40 39 150 41 218
-41 40 151 42 219
-42 220 41 152 43
-43 44 111 42 153
-44 154 45 112 43
-45 44 155 46 113
-46 45 156 47 114
-47 46 157 48 115
-48 47 158 49 116
-49 48 159 50 117
-50 49 160 51 118
-51 50 161 52 119
-52 51 162 53 120
-53 121 52 163 54
-54 55 122 53 164
-55 165 56 123 54
-56 55 166 57 124
-57 56 167 58 125
-58 57 168 59 126
-59 58 169 60 127
-60 59 170 61 128
-61 60 171 62 129
-62 61 172 63 130
-63 62 173 64 131
-64 132 63 174 65
-65 66 133 64 175
-66 176 67 134 65
-67 66 177 68 135
-68 67 178 69 136
-69 68 179 70 137
-70 69 180 71 138
-71 70 181 72 139
-72 71 182 73 140
-73 72 183 74 141
-74 73 184 75 142
-75 143 74 185 76
-76 77 144 75 186
-77 187 78 145 76
-78 77 188 79 146
-79 78 189 80 147
-80 79 190 81 148
-81 80 191 82 149
-82 81 192 83 150
-83 82 193 84 151
-84 83 194 85 152
-85 84 195 86 153
-86 154 85 196 87
-87 88 155 86 197
-88 198 89 156 87
-89 88 199 90 157
-90 89 200 91 158
-91 90 201 92 159
-92 91 202 93 160
-93 92 203 94 161
-94 93 204 95 162
-95 94 205 96 163
-96 95 206 97 164
-97 165 96 207 98
-98 99 166 97 208
-99 209 100 167 98
-100 99 210 101 168
-101 100 211 102 169
-102 101 212 103 170
-103 102 213 104 171
-104 103 214 105 172
-105 104 215 106 173
-106 105 216 107 174
-107 106 217 108 175
-108 176 107 218 109
-109 110 177 108 219
-110 220 1 178 109
-111 220 1 112 43
-112 44 111 2 113
-113 45 112 3 114
-114 46 113 4 115
-115 47 114 5 116
-116 48 115 6 117
-117 49 116 7 118
-118 50 117 8 119
-119 51 118 9 120
-120 121 52 119 10
-121 11 122 53 120
-122 121 12 123 54
-123 55 122 13 124
-124 56 123 14 125
-125 57 124 15 126
-126 58 125 16 127
-127 59 126 17 128
-128 60 127 18 129
-129 61 128 19 130
-130 62 129 20 131
-131 132 63 130 21
-132 22 133 64 131
-133 132 23 134 65
-134 66 133 24 135
-135 67 134 25 136
-136 68 135 26 137
-137 69 136 27 138
-138 70 137 28 139
-139 71 138 29 140
-140 72 139 30 141
-141 73 140 31 142
-142 143 74 141 32
-143 33 144 75 142
-144 143 34 145 76
-145 77 144 35 146
-146 78 145 36 147
-147 79 146 37 148
-148 80 147 38 149
-149 81 148 39 150
-150 82 149 40 151
-151 83 150 41 152
-152 84 151 42 153
-153 154 85 152 43
-154 44 155 86 153
-155 154 45 156 87
-156 88 155 46 157
-157 89 156 47 158
-158 90 157 48 159
-159 91 158 49 160
-160 92 159 50 161
-161 93 160 51 162
-162 94 161 52 163
-163 95 162 53 164
-164 165 96 163 54
-165 55 166 97 164
-166 165 56 167 98
-167 99 166 57 168
-168 100 167 58 169
-169 101 168 59 170
-170 102 169 60 171
-171 103 170 61 172
-172 104 171 62 173
-173 105 172 63 174
-174 106 173 64 175
-175 176 107 174 65
-176 66 177 108 175
-177 176 67 178 109
-178 110 177 68 179
-179 1 178 69 180
-180 2 179 70 181
-181 3 180 71 182
-182 4 181 72 183
-183 5 182 73 184
-184 6 183 74 185
-185 7 184 75 186
-186 187 8 185 76
-187 77 188 9 186
-188 187 78 189 10
-189 11 188 79 190
-190 12 189 80 191
-191 13 190 81 192
-192 14 191 82 193
-193 15 192 83 194
-194 16 193 84 195
-195 17 194 85 196
-196 18 195 86 197
-197 198 19 196 87
-198 88 199 20 197
-199 198 89 200 21
-200 22 199 90 201
-201 23 200 91 202
-202 24 201 92 203
-203 25 202 93 204
-204 26 203 94 205
-205 27 204 95 206
-206 28 205 96 207
-207 29 206 97 208
-208 209 30 207 98
-209 99 210 31 208
-210 209 100 211 32
-211 33 210 101 212
-212 34 211 102 213
-213 35 212 103 214
-214 36 213 104 215
-215 37 214 105 216
-216 38 215 106 217
-217 39 216 107 218
-218 40 217 108 219
-219 220 41 218 109
-220 110 111 42 219
0