C4graphGraph forms for C4 [ 220, 15 ] = SDD(C_55(1,21))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 220, 15 ] = SDD(C_55(1,21)).

(I) Following is a form readable by MAGMA:

g:=Graph<220|{ {98, 112}, {98, 123}, {83, 115}, {81, 117}, {85, 120}, {75, 121}, {69, 125}, {70, 124}, {70, 123}, {46, 111}, {57, 120}, {61, 126}, {62, 119}, {60, 118}, {61, 118}, {61, 115}, {59, 116}, {45, 127}, {61, 111}, {40, 126}, {39, 127}, {45, 117}, {45, 119}, {46, 116}, {46, 112}, {45, 114}, {46, 113}, {27, 123}, {28, 125}, {30, 127}, {29, 126}, {25, 125}, {26, 124}, {27, 124}, {16, 120}, {18, 122}, {17, 122}, {26, 113}, {25, 114}, {18, 121}, {2, 111}, {1, 111}, {1, 113}, {10, 122}, {9, 121}, {1, 112}, {8, 121}, {3, 114}, {2, 115}, {9, 122}, {2, 118}, {6, 114}, {5, 113}, {4, 112}, {3, 119}, {1, 116}, {3, 117}, {11, 115}, {15, 119}, {14, 118}, {13, 117}, {12, 116}, {5, 124}, {6, 125}, {2, 126}, {3, 127}, {4, 123}, {7, 120}, {4, 132}, {38, 166}, {8, 136}, {7, 135}, {6, 134}, {5, 133}, {50, 178}, {40, 169}, {87, 214}, {71, 198}, {41, 171}, {58, 184}, {73, 203}, {10, 137}, {95, 220}, {42, 169}, {16, 147}, {12, 143}, {11, 143}, {82, 214}, {47, 171}, {52, 176}, {56, 188}, {11, 142}, {37, 160}, {33, 164}, {55, 178}, {57, 188}, {18, 148}, {94, 216}, {49, 183}, {7, 128}, {91, 220}, {87, 208}, {77, 202}, {54, 177}, {19, 155}, {89, 209}, {29, 149}, {23, 159}, {22, 158}, {21, 157}, {20, 156}, {8, 129}, {34, 171}, {10, 131}, {58, 179}, {65, 200}, {47, 165}, {80, 218}, {71, 205}, {9, 130}, {95, 212}, {17, 154}, {66, 201}, {26, 150}, {73, 196}, {94, 211}, {89, 212}, {88, 213}, {24, 150}, {25, 151}, {20, 155}, {37, 170}, {28, 147}, {54, 185}, {10, 154}, {88, 200}, {18, 130}, {51, 163}, {67, 211}, {71, 215}, {4, 149}, {8, 153}, {6, 151}, {59, 170}, {66, 211}, {67, 210}, {17, 131}, {5, 150}, {39, 180}, {73, 218}, {14, 154}, {95, 203}, {35, 183}, {29, 137}, {53, 161}, {32, 181}, {92, 201}, {86, 195}, {77, 216}, {58, 175}, {15, 153}, {91, 205}, {90, 204}, {84, 194}, {77, 219}, {32, 182}, {30, 136}, {56, 174}, {64, 214}, {68, 210}, {33, 182}, {94, 201}, {93, 202}, {91, 204}, {88, 207}, {86, 193}, {78, 217}, {68, 211}, {17, 137}, {48, 168}, {60, 164}, {19, 138}, {91, 194}, {87, 206}, {38, 191}, {21, 140}, {20, 141}, {57, 160}, {59, 162}, {56, 162}, {66, 216}, {74, 208}, {22, 141}, {62, 165}, {23, 139}, {95, 195}, {93, 193}, {92, 192}, {36, 184}, {48, 172}, {49, 173}, {9, 148}, {43, 182}, {39, 186}, {15, 146}, {13, 144}, {50, 175}, {24, 134}, {90, 196}, {89, 199}, {43, 181}, {7, 152}, {90, 197}, {89, 198}, {38, 185}, {36, 187}, {31, 128}, {26, 133}, {25, 134}, {20, 139}, {14, 145}, {72, 215}, {104, 200}, {32, 129}, {110, 207}, {107, 202}, {100, 197}, {99, 194}, {44, 141}, {42, 139}, {40, 137}, {38, 135}, {36, 133}, {34, 131}, {101, 199}, {33, 130}, {109, 206}, {101, 198}, {41, 138}, {37, 134}, {30, 186}, {12, 170}, {60, 154}, {35, 132}, {108, 203}, {104, 207}, {44, 139}, {43, 140}, {62, 153}, {27, 179}, {34, 138}, {28, 180}, {48, 152}, {22, 191}, {110, 199}, {11, 161}, {100, 206}, {43, 129}, {41, 131}, {30, 180}, {15, 165}, {14, 164}, {57, 147}, {21, 190}, {16, 188}, {32, 140}, {62, 146}, {60, 145}, {12, 162}, {99, 205}, {31, 177}, {19, 189}, {13, 163}, {63, 145}, {39, 136}, {108, 195}, {99, 204}, {16, 160}, {108, 220}, {107, 219}, {97, 209}, {44, 156}, {28, 172}, {31, 174}, {101, 212}, {63, 142}, {21, 167}, {96, 210}, {24, 170}, {36, 151}, {107, 216}, {37, 150}, {29, 169}, {102, 210}, {101, 209}, {97, 213}, {59, 143}, {19, 166}, {110, 219}, {42, 159}, {13, 187}, {41, 159}, {27, 173}, {44, 155}, {24, 160}, {108, 212}, {96, 217}, {47, 148}, {109, 214}, {34, 159}, {109, 208}, {104, 213}, {40, 149}, {22, 168}, {23, 169}, {99, 220}, {102, 217}, {82, 146}, {103, 167}, {81, 144}, {82, 144}, {106, 168}, {94, 156}, {65, 130}, {75, 136}, {75, 129}, {79, 133}, {76, 135}, {107, 167}, {85, 152}, {105, 166}, {64, 144}, {109, 189}, {64, 146}, {85, 135}, {75, 153}, {102, 181}, {84, 128}, {105, 189}, {85, 128}, {106, 191}, {100, 177}, {96, 181}, {69, 147}, {104, 190}, {78, 152}, {23, 192}, {79, 151}, {92, 132}, {68, 157}, {103, 190}, {68, 158}, {96, 186}, {83, 143}, {110, 178}, {102, 186}, {31, 194}, {100, 185}, {83, 142}, {67, 158}, {66, 156}, {67, 157}, {74, 148}, {58, 218}, {74, 171}, {53, 215}, {82, 176}, {78, 172}, {35, 192}, {105, 138}, {80, 179}, {86, 178}, {65, 164}, {84, 177}, {71, 161}, {98, 132}, {88, 190}, {78, 168}, {72, 174}, {106, 141}, {80, 184}, {33, 200}, {48, 217}, {51, 218}, {69, 172}, {35, 201}, {93, 183}, {90, 176}, {87, 189}, {81, 187}, {77, 167}, {42, 192}, {63, 213}, {72, 162}, {73, 163}, {76, 166}, {70, 173}, {103, 140}, {92, 183}, {55, 219}, {63, 209}, {56, 215}, {97, 142}, {74, 165}, {49, 193}, {97, 145}, {93, 173}, {52, 196}, {55, 199}, {64, 176}, {50, 195}, {52, 197}, {69, 180}, {81, 163}, {105, 155}, {83, 161}, {50, 193}, {76, 191}, {53, 198}, {54, 197}, {72, 188}, {106, 158}, {79, 187}, {70, 179}, {76, 185}, {51, 196}, {98, 149}, {79, 184}, {65, 182}, {51, 203}, {52, 204}, {53, 205}, {54, 206}, {55, 207}, {86, 175}, {84, 174}, {103, 157}, {49, 202}, {47, 208}, {80, 175} }>;

(II) A more general form is to represent the graph as the orbit of {98, 112} under the group generated by the following permutations:

a: (89, 101)
b: (53, 71)
c: (9, 18)
d: (24, 37)
e: (66, 94)
f: (22, 106)
g: (55, 110)
h: (47, 74)
m: (7, 85)
n1: (3, 45)
a1: (38, 76)
b1: (48, 78)
c1: (13, 81)
d1: (27, 70)
e1: (20, 44)
f1: (95, 108)
g1: (56, 72)
h1: (14, 60)
m1: (50, 86)
n2: (96, 102)
a2: (29, 40)
b2: (2, 12)(3, 20)(4, 5)(6, 23)(7, 9)(8, 38)(10, 16)(13, 66)(14, 56)(15, 22)(17, 57)(18, 85)(19, 30)(21, 52)(24, 29)(25, 42)(26, 98)(28, 34)(31, 33)(32, 54)(35, 36)(37, 40)(39, 105)(41, 69)(43, 100)(44, 45)(47, 48)(49, 58)(51, 77)(53, 63)(55, 95)(59, 61)(60, 72)(62, 106)(64, 67)(65, 84)(68, 82)(71, 97)(73, 107)(74, 78)(75, 76)(79, 92)(80, 93)(81, 94)(87, 96)(88, 91)(90, 103)(99, 104)(102, 109)(108, 110)(111, 116)(112, 113)(114, 139)(115, 143)(117, 156)(118, 162)(119, 141)(120, 122)(121, 135)(123, 124)(125, 159)(126, 170)(127, 155)(128, 130)(129, 185)(131, 147)(132, 133)(134, 169)(136, 166)(137, 160)(138, 180)(140, 197)(142, 161)(144, 211)(145, 215)(146, 158)(148, 152)(149, 150)(151, 192)(153, 191)(154, 188)(157, 176)(163, 216)(164, 174)(165, 168)(167, 196)(171, 172)(173, 179)(175, 193)(177, 182)(178, 195)(181, 206)(183, 184)(186, 189)(187, 201)(190, 204)(194, 200)(198, 209)(199, 212)(202, 218)(203, 219)(205, 213)(207, 220)(208, 217)(210, 214)
c2: (51, 73)
d2: (11, 83)
e2: (91, 99)
f2: (10, 17)
g2: (2, 4)(3, 7)(5, 12)(6, 16)(8, 22)(9, 20)(10, 23)(11, 27)(13, 31)(14, 35)(15, 38)(17, 42)(18, 44)(19, 47)(25, 57)(26, 59)(30, 48)(32, 67)(33, 66)(36, 56)(39, 78)(43, 68)(45, 85)(49, 63)(50, 89)(51, 91)(53, 58)(54, 64)(60, 92)(61, 98)(62, 76)(65, 94)(70, 83)(71, 80)(72, 79)(73, 99)(74, 105)(75, 106)(77, 88)(81, 84)(82, 100)(86, 101)(93, 97)(104, 107)(111, 112)(113, 116)(114, 120)(115, 123)(117, 128)(118, 132)(119, 135)(121, 141)(122, 139)(124, 143)(125, 147)(126, 149)(127, 152)(129, 158)(130, 156)(131, 159)(133, 162)(134, 160)(136, 168)(137, 169)(138, 171)(140, 157)(142, 173)(144, 177)(145, 183)(146, 185)(148, 155)(150, 170)(151, 188)(153, 191)(154, 192)(161, 179)(163, 194)(164, 201)(165, 166)(167, 190)(172, 180)(174, 187)(175, 198)(176, 197)(178, 199)(181, 210)(182, 211)(184, 215)(186, 217)(189, 208)(193, 209)(195, 212)(196, 204)(200, 216)(202, 213)(203, 220)(205, 218)(206, 214)(207, 219)
h2: (8, 75)
m2: (6, 25)
n3: (4, 98)
a3: (15, 62)
b3: (64, 82)
c3: (2, 61)
d3: (16, 57)
e3: (77, 107)
f3: (5, 26)
g3: (30, 39)
h3: (35, 92)
m3: (21, 103)
n4: (88, 104)
a4: (28, 69)
b4: (1, 2)(3, 8)(4, 11)(5, 14)(6, 9)(7, 19)(10, 24)(12, 29)(13, 32)(15, 30)(16, 34)(17, 37)(18, 25)(20, 31)(21, 51)(22, 54)(23, 56)(26, 60)(27, 63)(28, 47)(33, 36)(35, 53)(39, 62)(40, 59)(41, 57)(42, 72)(43, 81)(44, 84)(45, 75)(46, 61)(48, 87)(49, 89)(50, 55)(52, 67)(58, 88)(64, 96)(65, 79)(66, 91)(68, 90)(69, 74)(70, 97)(71, 92)(73, 103)(77, 95)(78, 109)(80, 104)(82, 102)(83, 98)(85, 105)(86, 110)(93, 101)(94, 99)(100, 106)(107, 108)(112, 115)(113, 118)(114, 121)(116, 126)(117, 129)(119, 136)(120, 138)(122, 134)(123, 142)(124, 145)(125, 148)(127, 153)(128, 155)(130, 151)(131, 160)(132, 161)(133, 164)(135, 166)(137, 170)(139, 174)(140, 163)(141, 177)(143, 149)(144, 181)(146, 186)(147, 171)(150, 154)(152, 189)(156, 194)(157, 196)(158, 197)(159, 188)(162, 169)(165, 180)(167, 203)(168, 206)(172, 208)(173, 209)(175, 207)(176, 210)(179, 213)(182, 187)(183, 198)(184, 200)(185, 191)(190, 218)(192, 215)(193, 199)(195, 219)(201, 205)(202, 212)(204, 211)(214, 217)(216, 220)
c4: (34, 41)
d4: (32, 43)
e4: (31, 84)
f4: (87, 109)
g4: (36, 79)
h4: (58, 80)
m4: (54, 100)
n5: (49, 93)
a5: (12, 59)
b5: (33, 65)
c5: (23, 42)
d5: (63, 97)
e5: (52, 90)
f5: (67, 68)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 220, 15 ]
220
-1 111 112 113 116
-2 111 115 126 118
-3 114 127 117 119
-4 132 112 123 149
-5 133 113 124 150
-6 134 114 125 151
-7 135 128 152 120
-8 121 136 129 153
-9 121 122 148 130
-10 154 122 137 131
-11 143 115 161 142
-12 143 170 116 162
-13 187 144 117 163
-14 154 145 118 164
-15 165 146 119 153
-16 188 147 160 120
-17 154 122 137 131
-18 121 122 148 130
-19 155 166 189 138
-20 155 156 139 141
-21 167 157 190 140
-22 168 158 191 141
-23 169 159 192 139
-24 134 170 160 150
-25 134 114 125 151
-26 133 113 124 150
-27 123 124 179 173
-28 125 147 180 172
-29 169 126 137 149
-30 136 180 127 186
-31 177 128 194 174
-32 181 182 129 140
-33 200 182 130 164
-34 159 138 171 131
-35 132 201 192 183
-36 187 133 151 184
-37 134 170 160 150
-38 166 135 191 185
-39 136 180 127 186
-40 169 126 137 149
-41 159 138 171 131
-42 169 159 192 139
-43 181 182 129 140
-44 155 156 139 141
-45 114 127 117 119
-46 111 112 113 116
-47 165 148 171 208
-48 168 172 217 152
-49 202 193 183 173
-50 178 193 195 175
-51 203 163 196 218
-52 176 204 196 197
-53 198 215 161 205
-54 177 206 185 197
-55 199 178 207 219
-56 188 215 162 174
-57 188 147 160 120
-58 179 184 218 175
-59 143 170 116 162
-60 154 145 118 164
-61 111 115 126 118
-62 165 146 119 153
-63 209 145 213 142
-64 176 144 146 214
-65 200 182 130 164
-66 156 211 201 216
-67 210 211 157 158
-68 210 211 157 158
-69 125 147 180 172
-70 123 124 179 173
-71 198 215 161 205
-72 188 215 162 174
-73 203 163 196 218
-74 165 148 171 208
-75 121 136 129 153
-76 166 135 191 185
-77 167 202 216 219
-78 168 172 217 152
-79 187 133 151 184
-80 179 184 218 175
-81 187 144 117 163
-82 176 144 146 214
-83 143 115 161 142
-84 177 128 194 174
-85 135 128 152 120
-86 178 193 195 175
-87 189 214 206 208
-88 200 190 213 207
-89 198 209 199 212
-90 176 204 196 197
-91 220 204 194 205
-92 132 201 192 183
-93 202 193 183 173
-94 156 211 201 216
-95 220 212 203 195
-96 210 181 217 186
-97 209 145 213 142
-98 132 112 123 149
-99 220 204 194 205
-100 177 206 185 197
-101 198 209 199 212
-102 210 181 217 186
-103 167 157 190 140
-104 200 190 213 207
-105 155 166 189 138
-106 168 158 191 141
-107 167 202 216 219
-108 220 212 203 195
-109 189 214 206 208
-110 199 178 207 219
-111 1 2 46 61
-112 1 46 4 98
-113 1 46 26 5
-114 45 3 25 6
-115 11 2 61 83
-116 1 12 46 59
-117 45 13 3 81
-118 2 14 60 61
-119 45 3 15 62
-120 57 16 7 85
-121 18 8 9 75
-122 17 18 9 10
-123 4 70 27 98
-124 26 70 5 27
-125 25 69 6 28
-126 2 61 29 40
-127 45 3 39 30
-128 7 84 85 31
-129 8 75 32 43
-130 33 18 9 65
-131 34 17 41 10
-132 35 4 92 98
-133 79 36 26 5
-134 24 25 37 6
-135 38 7 85 76
-136 39 8 30 75
-137 17 29 40 10
-138 34 105 19 41
-139 44 23 20 42
-140 103 21 32 43
-141 22 44 106 20
-142 11 83 63 97
-143 11 12 59 83
-144 13 81 82 64
-145 14 60 63 97
-146 15 82 62 64
-147 57 69 16 28
-148 47 18 74 9
-149 4 29 40 98
-150 24 26 37 5
-151 79 25 36 6
-152 78 48 7 85
-153 15 62 8 75
-154 14 60 17 10
-155 44 105 19 20
-156 44 66 94 20
-157 67 68 103 21
-158 22 67 68 106
-159 23 34 41 42
-160 24 57 37 16
-161 11 71 83 53
-162 12 56 59 72
-163 13 81 51 73
-164 33 14 60 65
-165 47 15 62 74
-166 38 105 19 76
-167 77 103 107 21
-168 22 78 48 106
-169 23 29 40 42
-170 12 24 37 59
-171 34 47 41 74
-172 78 69 48 28
-173 70 27 49 93
-174 56 72 84 31
-175 58 80 50 86
-176 90 82 52 64
-177 100 84 31 54
-178 55 110 50 86
-179 58 80 70 27
-180 69 28 39 30
-181 102 96 32 43
-182 33 32 43 65
-183 35 92 49 93
-184 79 36 58 80
-185 100 38 54 76
-186 102 39 30 96
-187 13 79 36 81
-188 56 57 16 72
-189 105 19 87 109
-190 88 103 104 21
-191 22 38 106 76
-192 23 35 92 42
-193 49 93 50 86
-194 99 91 84 31
-195 50 95 86 108
-196 90 51 73 52
-197 100 90 52 54
-198 89 101 71 53
-199 55 110 89 101
-200 33 88 104 65
-201 66 35 92 94
-202 77 49 93 107
-203 51 73 95 108
-204 99 90 91 52
-205 99 91 71 53
-206 100 54 87 109
-207 55 88 110 104
-208 47 74 87 109
-209 89 101 63 97
-210 67 68 102 96
-211 66 67 68 94
-212 89 101 95 108
-213 88 104 63 97
-214 82 64 87 109
-215 56 71 72 53
-216 66 77 94 107
-217 78 102 48 96
-218 58 80 51 73
-219 55 77 110 107
-220 99 91 95 108
0

**************