C4graphGraph forms for C4 [ 220, 16 ] = SDD(MSY(5,11,5,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 220, 16 ] = SDD(MSY(5,11,5,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<220|{ {48, 127}, {46, 126}, {47, 127}, {44, 126}, {45, 126}, {40, 124}, {43, 127}, {40, 125}, {43, 126}, {41, 124}, {42, 125}, {33, 121}, {34, 122}, {32, 121}, {37, 124}, {35, 122}, {34, 123}, {39, 123}, {38, 123}, {36, 122}, {37, 123}, {21, 117}, {29, 125}, {23, 119}, {20, 117}, {23, 118}, {20, 118}, {31, 125}, {26, 120}, {22, 117}, {16, 116}, {30, 122}, {16, 117}, {29, 120}, {17, 116}, {18, 116}, {31, 121}, {19, 116}, {30, 121}, {17, 120}, {4, 111}, {28, 119}, {3, 111}, {27, 119}, {2, 111}, {26, 119}, {1, 111}, {24, 118}, {25, 118}, {12, 124}, {1, 112}, {2, 115}, {5, 113}, {5, 112}, {6, 112}, {14, 120}, {7, 112}, {9, 113}, {11, 115}, {6, 127}, {11, 114}, {8, 113}, {8, 114}, {10, 113}, {15, 115}, {14, 115}, {12, 114}, {13, 114}, {25, 153}, {58, 186}, {59, 187}, {61, 189}, {67, 195}, {19, 146}, {88, 217}, {61, 188}, {63, 190}, {56, 186}, {83, 209}, {62, 188}, {63, 189}, {65, 195}, {66, 192}, {57, 186}, {75, 200}, {51, 183}, {69, 193}, {50, 183}, {69, 192}, {71, 194}, {77, 200}, {36, 162}, {49, 183}, {48, 182}, {56, 190}, {70, 192}, {71, 193}, {74, 204}, {59, 188}, {60, 187}, {64, 199}, {54, 190}, {74, 194}, {75, 195}, {76, 196}, {78, 198}, {4, 141}, {49, 184}, {70, 207}, {72, 193}, {76, 197}, {77, 196}, {73, 195}, {79, 197}, {3, 136}, {81, 218}, {22, 157}, {73, 194}, {78, 197}, {9, 133}, {94, 210}, {52, 184}, {55, 187}, {52, 185}, {91, 214}, {53, 184}, {55, 186}, {92, 210}, {54, 185}, {95, 208}, {32, 176}, {95, 207}, {94, 206}, {51, 163}, {34, 178}, {21, 132}, {92, 205}, {33, 176}, {13, 159}, {93, 207}, {89, 203}, {88, 202}, {35, 177}, {24, 138}, {34, 177}, {93, 206}, {42, 185}, {38, 178}, {83, 199}, {41, 189}, {36, 177}, {89, 204}, {82, 199}, {44, 185}, {39, 178}, {37, 179}, {90, 204}, {80, 198}, {37, 178}, {91, 204}, {90, 205}, {81, 198}, {80, 199}, {45, 181}, {47, 183}, {44, 181}, {84, 205}, {47, 182}, {27, 129}, {82, 200}, {41, 179}, {40, 179}, {86, 205}, {79, 212}, {46, 181}, {58, 161}, {40, 180}, {87, 203}, {85, 201}, {84, 200}, {68, 216}, {43, 182}, {87, 202}, {72, 213}, {10, 148}, {43, 181}, {42, 180}, {7, 152}, {86, 201}, {85, 202}, {18, 141}, {7, 167}, {8, 168}, {6, 167}, {14, 175}, {11, 170}, {9, 168}, {8, 169}, {4, 166}, {11, 169}, {10, 168}, {5, 167}, {27, 184}, {2, 166}, {14, 170}, {13, 169}, {3, 166}, {15, 170}, {12, 169}, {57, 156}, {1, 167}, {50, 148}, {1, 166}, {62, 153}, {2, 170}, {42, 130}, {29, 180}, {38, 143}, {15, 165}, {35, 137}, {31, 180}, {5, 168}, {21, 187}, {44, 130}, {30, 176}, {30, 177}, {47, 128}, {41, 134}, {31, 176}, {60, 147}, {6, 182}, {100, 212}, {97, 209}, {96, 208}, {49, 129}, {49, 128}, {103, 214}, {99, 210}, {96, 209}, {54, 135}, {28, 174}, {110, 220}, {106, 216}, {103, 213}, {102, 212}, {101, 215}, {50, 128}, {46, 156}, {32, 146}, {29, 175}, {51, 128}, {107, 216}, {106, 217}, {102, 213}, {98, 209}, {97, 210}, {55, 132}, {25, 173}, {99, 215}, {53, 129}, {26, 174}, {54, 130}, {55, 131}, {9, 188}, {110, 219}, {108, 217}, {105, 220}, {52, 129}, {27, 174}, {26, 175}, {24, 173}, {33, 151}, {109, 219}, {108, 218}, {101, 211}, {52, 130}, {100, 211}, {109, 218}, {107, 220}, {19, 171}, {28, 164}, {20, 172}, {60, 132}, {61, 133}, {63, 135}, {18, 171}, {98, 219}, {39, 158}, {23, 174}, {21, 172}, {20, 173}, {58, 131}, {63, 134}, {17, 171}, {45, 151}, {23, 173}, {22, 172}, {57, 131}, {16, 171}, {56, 131}, {61, 134}, {62, 133}, {3, 191}, {16, 172}, {17, 175}, {105, 215}, {104, 214}, {53, 139}, {48, 142}, {59, 133}, {12, 179}, {104, 215}, {56, 135}, {59, 132}, {4, 196}, {86, 150}, {80, 144}, {77, 141}, {78, 142}, {10, 203}, {74, 139}, {76, 141}, {78, 143}, {79, 142}, {22, 212}, {84, 150}, {82, 144}, {72, 138}, {73, 139}, {76, 142}, {82, 145}, {99, 160}, {87, 148}, {83, 144}, {86, 146}, {91, 159}, {87, 147}, {73, 140}, {101, 160}, {94, 155}, {93, 152}, {84, 145}, {64, 134}, {98, 164}, {95, 153}, {85, 147}, {65, 135}, {28, 219}, {95, 152}, {92, 155}, {85, 146}, {75, 140}, {7, 207}, {106, 162}, {104, 160}, {25, 208}, {109, 164}, {105, 160}, {94, 151}, {83, 154}, {66, 136}, {110, 164}, {107, 161}, {93, 151}, {92, 150}, {66, 137}, {110, 165}, {106, 161}, {88, 147}, {67, 136}, {68, 136}, {105, 165}, {90, 150}, {89, 149}, {69, 137}, {71, 139}, {65, 140}, {89, 148}, {71, 138}, {91, 149}, {109, 163}, {108, 162}, {107, 165}, {67, 140}, {108, 163}, {90, 149}, {69, 138}, {70, 137}, {64, 144}, {79, 157}, {15, 220}, {18, 196}, {72, 158}, {24, 193}, {19, 201}, {75, 145}, {13, 214}, {77, 145}, {70, 152}, {81, 143}, {74, 149}, {80, 143}, {38, 198}, {58, 216}, {35, 192}, {45, 206}, {68, 161}, {32, 201}, {51, 218}, {57, 211}, {62, 208}, {33, 206}, {39, 213}, {81, 163}, {48, 197}, {60, 202}, {53, 194}, {104, 159}, {98, 154}, {103, 159}, {102, 158}, {100, 156}, {99, 155}, {50, 203}, {103, 158}, {101, 156}, {100, 157}, {96, 153}, {88, 162}, {97, 155}, {96, 154}, {68, 191}, {102, 157}, {97, 154}, {67, 191}, {36, 217}, {46, 211}, {64, 189}, {66, 191}, {65, 190} }>;

(II) A more general form is to represent the graph as the orbit of {48, 127} under the group generated by the following permutations:

a: (113, 168)
b: (129, 184)
c: (152, 207)
d: (155, 210)
e: (140, 195)
f: (124, 179)
g: (156, 211)
h: (114, 169)
m: (131, 186)
n1: (123, 178)
a1: (1, 2, 15, 105, 101, 100, 22, 20, 25, 95, 7)(3, 11, 107, 104, 57, 102, 21, 24, 62, 70, 5)(4, 14, 110, 99, 46, 79, 16, 23, 96, 93, 6)(8, 68, 13, 58, 103, 55, 72, 59, 69, 9, 66)(10, 67, 12, 106, 91, 56, 39, 60, 71, 61, 35)(17, 28, 97, 45, 48, 18, 26, 98, 94, 43, 76)(19, 27, 83, 33, 47, 77, 29, 109, 92, 44, 78)(30, 50, 75, 40, 108, 90, 54, 38, 85, 53, 64)(31, 51, 84, 42, 81, 86, 52, 80, 32, 49, 82)(34, 87, 73, 41, 36, 89, 65, 37, 88, 74, 63)(111, 115, 165, 160, 156, 157, 117, 118, 153, 152, 112)(113, 136, 114, 161, 159, 131, 158, 132, 138, 133, 137)(116, 119, 154, 151, 127, 141, 120, 164, 155, 126, 142)(121, 128, 145, 125, 163, 150, 130, 143, 146, 129, 144)(122, 148, 140, 124, 162, 149, 135, 123, 147, 139, 134)(166, 170, 220, 215, 211, 212, 172, 173, 208, 207, 167)(168, 191, 169, 216, 214, 186, 213, 187, 193, 188, 192)(171, 174, 209, 206, 182, 196, 175, 219, 210, 181, 197)(176, 183, 200, 180, 218, 205, 185, 198, 201, 184, 199)(177, 203, 195, 179, 217, 204, 190, 178, 202, 194, 189)
b1: (132, 187)
c1: (122, 177)
d1: (162, 217)
e1: (133, 188)
f1: (148, 203)
g1: (125, 180)
h1: (149, 204)
m1: (115, 170)
n2: (137, 192)
a2: (121, 176)
b2: (146, 201)
c2: (160, 215)
d2: (164, 219)
e2: (145, 200)
f2: (157, 212)
g2: (138, 193)
h2: (128, 183)
m2: (153, 208)
n3: (119, 174)
a3: (159, 214)
b3: (135, 190)
c3: (127, 182)
d3: (150, 205)
e3: (151, 206)
f3: (154, 209)
g3: (2, 6, 3, 5, 4, 7)(8, 76, 70, 11, 48, 66)(9, 18, 93, 15, 47, 67)(10, 77, 95, 14, 43, 68)(12, 79, 35, 13, 78, 69)(16, 33, 105, 51, 73, 61)(17, 45, 107, 50, 75, 62)(19, 94, 110, 49, 65, 59)(20, 31, 101, 108, 74, 64)(21, 32, 99, 109, 53, 63)(22, 30, 104, 81, 71, 41)(23, 42, 57, 88, 90, 83)(24, 40, 100, 36, 91, 80)(25, 29, 46, 106, 89, 82)(26, 44, 58, 87, 84, 96)(27, 54, 55, 85, 92, 98)(28, 52, 56, 60, 86, 97)(34, 103, 38, 72, 37, 102)(111, 112)(113, 141, 152, 115, 127, 136)(114, 142, 137)(116, 151, 165, 128, 140, 133)(117, 121, 160, 163, 139, 134)(118, 125, 156, 162, 149, 144)(119, 130, 131, 147, 150, 154)(120, 126, 161, 148, 145, 153)(122, 159, 143, 138, 124, 157)(123, 158)(129, 135, 132, 146, 155, 164)(166, 167)(168, 196, 207, 170, 182, 191)(169, 197, 192)(171, 206, 220, 183, 195, 188)(172, 176, 215, 218, 194, 189)(173, 180, 211, 217, 204, 199)(174, 185, 186, 202, 205, 209)(175, 181, 216, 203, 200, 208)(177, 214, 198, 193, 179, 212)(178, 213)(184, 190, 187, 201, 210, 219)
h3: (118, 173)
m3: (142, 197)
n4: (144, 199)
a4: (126, 181)
b4: (111, 166)
c4: (2, 5)(3, 6)(4, 7)(8, 11)(9, 14)(10, 15)(16, 25)(17, 62)(18, 95)(19, 96)(21, 23)(22, 24)(26, 59)(27, 55)(28, 60)(29, 61)(30, 80)(31, 64)(32, 83)(33, 82)(34, 38)(35, 78)(36, 81)(40, 41)(42, 63)(43, 67)(44, 65)(45, 75)(46, 73)(47, 68)(48, 66)(49, 58)(50, 107)(51, 106)(52, 56)(53, 57)(69, 79)(70, 76)(71, 100)(72, 102)(74, 101)(77, 93)(84, 94)(85, 98)(86, 97)(87, 110)(88, 109)(89, 105)(90, 99)(91, 104)(111, 112)(113, 115)(116, 153)(117, 118)(119, 132)(120, 133)(121, 144)(122, 143)(125, 134)(126, 140)(127, 136)(128, 161)(129, 131)(130, 135)(137, 142)(138, 157)(139, 156)(141, 152)(145, 151)(146, 154)(147, 164)(148, 165)(149, 160)(150, 155)(162, 163)(166, 167)(168, 170)(171, 208)(172, 173)(174, 187)(175, 188)(176, 199)(177, 198)(180, 189)(181, 195)(182, 191)(183, 216)(184, 186)(185, 190)(192, 197)(193, 212)(194, 211)(196, 207)(200, 206)(201, 209)(202, 219)(203, 220)(204, 215)(205, 210)(217, 218)
d4: (143, 198)
e4: (147, 202)
f4: (120, 175)
g4: (116, 171)
h4: (163, 218)
m4: (158, 213)
n5: (141, 196)
a5: (134, 189)
b5: (139, 194)
c5: (130, 185)
d5: (165, 220)
e5: (136, 191)
f5: (112, 167)
g5: (161, 216)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 220, 16 ]
220
-1 111 166 112 167
-2 111 166 115 170
-3 111 166 136 191
-4 111 166 141 196
-5 112 167 113 168
-6 112 167 127 182
-7 112 167 152 207
-8 113 168 114 169
-9 133 188 113 168
-10 113 168 148 203
-11 114 169 115 170
-12 124 179 114 169
-13 114 169 159 214
-14 115 170 120 175
-15 165 220 115 170
-16 116 171 117 172
-17 116 171 120 175
-18 116 171 141 196
-19 146 201 116 171
-20 117 172 118 173
-21 132 187 117 172
-22 157 212 117 172
-23 118 173 119 174
-24 138 193 118 173
-25 118 173 153 208
-26 119 174 120 175
-27 129 184 119 174
-28 119 174 164 219
-29 125 180 120 175
-30 121 176 122 177
-31 121 176 125 180
-32 121 176 146 201
-33 121 176 151 206
-34 122 177 123 178
-35 122 177 137 192
-36 122 177 162 217
-37 123 178 124 179
-38 143 198 123 178
-39 123 178 158 213
-40 124 179 125 180
-41 134 189 124 179
-42 125 180 130 185
-43 126 181 127 182
-44 126 181 130 185
-45 126 181 151 206
-46 156 211 126 181
-47 127 182 128 183
-48 127 182 142 197
-49 128 183 129 184
-50 148 203 128 183
-51 128 183 163 218
-52 129 184 130 185
-53 139 194 129 184
-54 135 190 130 185
-55 132 187 131 186
-56 135 190 131 186
-57 156 211 131 186
-58 161 216 131 186
-59 132 187 133 188
-60 132 187 147 202
-61 133 188 134 189
-62 133 188 153 208
-63 134 189 135 190
-64 144 199 134 189
-65 135 190 140 195
-66 136 191 137 192
-67 136 191 140 195
-68 136 191 161 216
-69 137 192 138 193
-70 137 192 152 207
-71 138 193 139 194
-72 158 213 138 193
-73 139 194 140 195
-74 149 204 139 194
-75 145 200 140 195
-76 141 196 142 197
-77 145 200 141 196
-78 143 198 142 197
-79 157 212 142 197
-80 143 198 144 199
-81 143 198 163 218
-82 144 199 145 200
-83 154 209 144 199
-84 145 200 150 205
-85 146 201 147 202
-86 146 201 150 205
-87 147 202 148 203
-88 147 202 162 217
-89 148 203 149 204
-90 149 204 150 205
-91 159 214 149 204
-92 155 210 150 205
-93 151 206 152 207
-94 155 210 151 206
-95 152 207 153 208
-96 154 209 153 208
-97 154 209 155 210
-98 154 209 164 219
-99 155 210 160 215
-100 156 211 157 212
-101 156 211 160 215
-102 157 212 158 213
-103 158 213 159 214
-104 159 214 160 215
-105 165 220 160 215
-106 161 216 162 217
-107 165 220 161 216
-108 162 217 163 218
-109 163 218 164 219
-110 165 220 164 219
-111 1 2 3 4
-112 1 5 6 7
-113 5 8 9 10
-114 11 12 13 8
-115 11 2 14 15
-116 16 17 18 19
-117 22 16 20 21
-118 23 24 25 20
-119 23 26 27 28
-120 14 26 17 29
-121 33 30 31 32
-122 34 35 36 30
-123 34 37 38 39
-124 12 37 40 41
-125 29 40 31 42
-126 44 45 46 43
-127 47 48 6 43
-128 47 49 50 51
-129 27 49 52 53
-130 44 52 42 54
-131 55 56 57 58
-132 55 59 60 21
-133 59 61 62 9
-134 61 41 63 64
-135 56 63 54 65
-136 66 67 68 3
-137 66 35 69 70
-138 24 69 71 72
-139 71 73 74 53
-140 67 73 75 65
-141 77 4 18 76
-142 78 79 48 76
-143 78 80 81 38
-144 80 82 83 64
-145 77 82 84 75
-146 19 85 86 32
-147 88 60 85 87
-148 89 50 10 87
-149 89 90 91 74
-150 90 92 84 86
-151 33 45 93 94
-152 70 93 7 95
-153 25 62 95 96
-154 83 96 97 98
-155 99 92 94 97
-156 100 46 57 101
-157 22 100 79 102
-158 102 103 39 72
-159 13 91 103 104
-160 99 101 104 105
-161 68 58 106 107
-162 88 36 106 108
-163 81 51 108 109
-164 110 28 98 109
-165 110 15 105 107
-166 1 2 3 4
-167 1 5 6 7
-168 5 8 9 10
-169 11 12 13 8
-170 11 2 14 15
-171 16 17 18 19
-172 22 16 20 21
-173 23 24 25 20
-174 23 26 27 28
-175 14 26 17 29
-176 33 30 31 32
-177 34 35 36 30
-178 34 37 38 39
-179 12 37 40 41
-180 29 40 31 42
-181 44 45 46 43
-182 47 48 6 43
-183 47 49 50 51
-184 27 49 52 53
-185 44 52 42 54
-186 55 56 57 58
-187 55 59 60 21
-188 59 61 62 9
-189 61 41 63 64
-190 56 63 54 65
-191 66 67 68 3
-192 66 35 69 70
-193 24 69 71 72
-194 71 73 74 53
-195 67 73 75 65
-196 77 4 18 76
-197 78 79 48 76
-198 78 80 81 38
-199 80 82 83 64
-200 77 82 84 75
-201 19 85 86 32
-202 88 60 85 87
-203 89 50 10 87
-204 89 90 91 74
-205 90 92 84 86
-206 33 45 93 94
-207 70 93 7 95
-208 25 62 95 96
-209 83 96 97 98
-210 99 92 94 97
-211 100 46 57 101
-212 22 100 79 102
-213 102 103 39 72
-214 13 91 103 104
-215 99 101 104 105
-216 68 58 106 107
-217 88 36 106 108
-218 81 51 108 109
-219 110 28 98 109
-220 110 15 105 107
0

**************