[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 220, 17 ] =
BGCG(MSY(5,11,5,0);K2;1).
(I) Following is a form readable by MAGMA:
g:=Graph<220|{ {108, 124}, {109, 124}, {98, 112}, {99, 113}, {105, 115}, {104,
115}, {97, 125}, {101, 121}, {90, 122}, {95, 127}, {86, 116}, {89, 122}, {91,
127}, {89, 113}, {80, 123}, {80, 126}, {92, 114}, {85, 123}, {93, 114}, {74,
120}, {76, 126}, {68, 119}, {69, 118}, {67, 119}, {64, 120}, {87, 111}, {86,
111}, {71, 121}, {78, 112}, {43, 111}, {57, 125}, {49, 116}, {50, 116}, {61,
116}, {63, 117}, {62, 117}, {54, 123}, {59, 118}, {53, 123}, {32, 112}, {34,
114}, {37, 113}, {46, 122}, {42, 126}, {38, 113}, {35, 121}, {34, 121}, {44,
114}, {30, 124}, {19, 119}, {25, 125}, {25, 124}, {21, 125}, {16, 122}, {31,
115}, {17, 127}, {31, 112}, {4, 117}, {7, 118}, {12, 120}, {6, 115}, {13, 120},
{23, 111}, {14, 117}, {2, 126}, {2, 127}, {8, 118}, {9, 119}, {10, 138}, {54,
182}, {51, 179}, {46, 174}, {18, 146}, {12, 140}, {68, 196}, {19, 146}, {51,
178}, {55, 182}, {65, 192}, {5, 134}, {52, 183}, {65, 194}, {70, 197}, {25,
157}, {51, 183}, {70, 194}, {30, 155}, {55, 178}, {16, 150}, {95, 217}, {29,
155}, {73, 207}, {1, 134}, {94, 217}, {29, 154}, {17, 150}, {11, 140}, {72,
207}, {3, 139}, {92, 212}, {45, 165}, {63, 183}, {68, 204}, {4, 141}, {52, 189},
{44, 165}, {28, 149}, {20, 157}, {19, 154}, {69, 204}, {32, 170}, {41, 163},
{33, 170}, {6, 138}, {36, 168}, {10, 135}, {9, 135}, {53, 187}, {45, 163}, {39,
169}, {23, 153}, {73, 199}, {75, 197}, {77, 195}, {22, 153}, {87, 216}, {76,
195}, {8, 152}, {48, 160}, {9, 152}, {36, 181}, {32, 177}, {68, 213}, {70, 215},
{27, 137}, {34, 176}, {3, 144}, {43, 184}, {23, 132}, {22, 133}, {56, 172}, {95,
203}, {90, 206}, {71, 211}, {41, 188}, {66, 215}, {69, 208}, {42, 188}, {55,
161}, {71, 209}, {76, 218}, {11, 156}, {75, 211}, {81, 201}, {33, 187}, {61,
167}, {64, 219}, {85, 206}, {23, 139}, {93, 193}, {88, 196}, {85, 201}, {50,
174}, {24, 132}, {8, 149}, {35, 190}, {21, 136}, {56, 165}, {62, 163}, {60,
162}, {38, 185}, {94, 193}, {79, 208}, {17, 177}, {47, 143}, {37, 133}, {26,
186}, {12, 173}, {46, 143}, {31, 190}, {27, 186}, {7, 164}, {50, 145}, {42,
137}, {5, 161}, {98, 198}, {48, 148}, {36, 128}, {54, 147}, {99, 198}, {39,
129}, {46, 136}, {1, 166}, {24, 176}, {42, 130}, {40, 128}, {63, 151}, {26,
179}, {43, 130}, {63, 150}, {1, 171}, {18, 185}, {108, 199}, {102, 202}, {6,
168}, {48, 158}, {49, 158}, {100, 203}, {8, 184}, {106, 218}, {49, 129}, {12,
189}, {96, 209}, {50, 131}, {22, 164}, {103, 213}, {28, 175}, {27, 175}, {35,
151}, {31, 171}, {29, 169}, {55, 131}, {61, 137}, {10, 191}, {41, 156}, {58,
143}, {59, 142}, {27, 173}, {109, 219}, {38, 144}, {58, 140}, {20, 172}, {57,
128}, {60, 133}, {5, 191}, {52, 142}, {37, 159}, {14, 180}, {15, 180}, {53,
142}, {47, 148}, {36, 159}, {26, 166}, {49, 141}, {45, 145}, {28, 160}, {56,
133}, {11, 181}, {102, 216}, {28, 162}, {25, 167}, {19, 172}, {107, 212}, {44,
147}, {40, 151}, {29, 162}, {24, 167}, {7, 199}, {100, 164}, {20, 212}, {6,
199}, {17, 208}, {14, 207}, {16, 210}, {100, 166}, {90, 152}, {18, 208}, {78,
140}, {16, 212}, {105, 173}, {96, 164}, {14, 203}, {99, 166}, {83, 150}, {13,
203}, {95, 152}, {64, 136}, {101, 173}, {84, 156}, {65, 137}, {67, 139}, {72,
128}, {15, 198}, {85, 156}, {65, 136}, {66, 139}, {4, 206}, {10, 193}, {76,
135}, {77, 134}, {21, 217}, {110, 162}, {83, 159}, {79, 131}, {3, 206}, {84,
153}, {78, 131}, {7, 201}, {80, 158}, {15, 193}, {13, 195}, {26, 202}, {108,
188}, {21, 196}, {20, 198}, {106, 184}, {93, 143}, {22, 196}, {71, 149}, {11,
216}, {107, 184}, {30, 205}, {74, 153}, {1, 213}, {30, 202}, {5, 209}, {78,
154}, {4, 209}, {107, 190}, {98, 183}, {9, 220}, {75, 158}, {2, 213}, {24, 207},
{15, 216}, {64, 151}, {77, 154}, {3, 219}, {109, 181}, {82, 138}, {73, 145}, {2,
219}, {66, 155}, {18, 200}, {97, 187}, {92, 134}, {13, 214}, {110, 181}, {106,
177}, {96, 187}, {74, 145}, {94, 130}, {72, 149}, {106, 180}, {110, 177}, {75,
171}, {97, 129}, {79, 175}, {33, 192}, {108, 141}, {45, 204}, {74, 171}, {33,
195}, {101, 135}, {82, 176}, {34, 192}, {83, 176}, {98, 129}, {38, 194}, {88,
188}, {40, 204}, {39, 194}, {87, 178}, {81, 180}, {57, 220}, {47, 201}, {107,
141}, {104, 142}, {89, 191}, {48, 214}, {58, 220}, {52, 211}, {93, 186}, {90,
189}, {88, 191}, {79, 168}, {81, 185}, {44, 197}, {59, 210}, {51, 217}, {110,
132}, {104, 130}, {54, 220}, {82, 185}, {97, 138}, {86, 189}, {67, 174}, {105,
132}, {91, 182}, {35, 205}, {43, 197}, {56, 214}, {60, 210}, {77, 163}, {57,
214}, {88, 169}, {40, 218}, {83, 161}, {73, 186}, {62, 202}, {103, 147}, {94,
170}, {81, 165}, {66, 182}, {61, 200}, {104, 157}, {102, 147}, {101, 144}, {84,
161}, {70, 179}, {37, 211}, {102, 144}, {100, 146}, {89, 175}, {59, 205}, {62,
200}, {69, 179}, {32, 215}, {99, 148}, {58, 205}, {47, 215}, {103, 159}, {80,
168}, {109, 148}, {72, 178}, {103, 157}, {86, 172}, {41, 210}, {105, 146}, {96,
155}, {91, 160}, {60, 192}, {92, 160}, {91, 167}, {82, 174}, {39, 218}, {53,
200}, {67, 190}, {84, 170}, {87, 169} }>;
(II) A more general form is to represent the graph as the orbit of {108, 124}
under the group generated by the following permutations:
a: (2, 26, 5, 31)(3, 30, 4, 35)(6, 17, 27, 55)(7, 16, 12, 54)(8, 46, 11, 53)(9,
47, 41, 52)(10, 32, 42, 51)(13, 44, 22, 20)(14, 34, 23, 25)(15, 33, 43, 21)(18,
28, 50, 36)(19, 48, 45, 37)(29, 49, 40, 38)(57, 81, 60, 86)(58, 85, 59, 90)(61,
72, 82, 110)(62, 71, 67, 109)(63, 101, 66, 108)(64, 102, 96, 107)(65, 87, 97,
106)(68, 99, 77, 75)(69, 89, 78, 80)(70, 88, 98, 76)(73, 83, 105, 91)(74, 103,
100, 92)(84, 104, 95, 93)(111, 125, 180, 192)(112, 126, 179, 191)(113, 154, 158,
204)(114, 153, 157, 203)(115, 127, 186, 161)(116, 128, 185, 162)(117, 121, 139,
124)(118, 122, 140, 123)(119, 148, 163, 211)(120, 147, 164, 212)(129, 218, 194,
169)(130, 217, 193, 170)(131, 168, 208, 175)(132, 167, 207, 176)(133, 172, 214,
165)(134, 171, 213, 166)(135, 215, 188, 183)(136, 216, 187, 184)(137, 178, 138,
177)(141, 151, 144, 155)(142, 152, 143, 156)(145, 159, 146, 160)(149, 174, 181,
200)(150, 173, 182, 199)(189, 220, 201, 210)(190, 219, 202, 209)(195, 197, 196,
198)(205, 206) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 17, 16, 46, 50, 49, 39, 29, 30, 26)(3, 18, 20, 21, 55, 4, 38, 19, 25,
51, 5)(6, 43, 33, 11, 7, 44, 13, 36, 8, 34, 12)(9, 24, 52, 10, 23, 53, 15, 22,
54, 14, 37)(27, 31, 42, 32, 41, 47, 45, 48, 40, 28, 35)(56, 57, 72, 71, 101,
105, 104, 94, 84, 85, 81)(58, 73, 75, 76, 110, 59, 93, 74, 80, 106, 60)(61, 98,
88, 66, 62, 99, 68, 91, 63, 89, 67)(64, 79, 107, 65, 78, 108, 70, 77, 109, 69,
92)(82, 86, 97, 87, 96, 102, 100, 103, 95, 83, 90)(111, 187, 216, 164, 147, 203,
159, 152, 176, 189, 138)(112, 188, 215, 163, 148, 204, 160, 151, 175, 190,
137)(113, 119, 167, 183, 191, 139, 200, 198, 196, 182, 117)(114, 120, 168, 184,
192, 140, 199, 197, 195, 181, 118)(115, 130, 170, 156, 201, 165, 214, 128, 149,
121, 173)(116, 129, 169, 155, 202, 166, 213, 127, 150, 122, 174)(123, 180, 133,
220, 207, 211, 135, 132, 142, 193, 153)(124, 179, 134, 219, 208, 212, 136, 131,
141, 194, 154)(125, 178, 209, 144, 146, 157, 217, 161, 206, 185, 172)(126, 177,
210, 143, 145, 158, 218, 162, 205, 186, 171)
c: (2, 26, 31, 5)(3, 27, 35, 10)(4, 42, 30, 6)(7, 49, 41, 25)(8, 39, 11, 24)(9,
38, 12, 34)(13, 44, 19, 37)(14, 43, 29, 36)(15, 23, 28, 40)(16, 21, 47, 50)(17,
51, 32, 55)(18, 52, 33, 54)(20, 22, 48, 45)(57, 81, 86, 60)(58, 82, 90, 65)(59,
97, 85, 61)(62, 104, 96, 80)(63, 94, 66, 79)(64, 93, 67, 89)(68, 99, 74, 92)(69,
98, 84, 91)(70, 78, 83, 95)(71, 76, 102, 105)(72, 106, 87, 110)(73, 107, 88,
109)(75, 77, 103, 100)(111, 162, 128, 180)(112, 161, 127, 179)(113, 120, 114,
119)(115, 209, 126, 202)(116, 210, 125, 201)(117, 130, 155, 168)(118, 129, 156,
167)(121, 135, 144, 173)(122, 136, 143, 174)(123, 200, 142, 187)(124, 199, 141,
188)(131, 150, 217, 215)(132, 149, 218, 216)(133, 214, 165, 172)(134, 213, 166,
171)(137, 205, 138, 206)(139, 175, 151, 193)(140, 176, 152, 194)(145, 212, 196,
148)(146, 211, 195, 147)(153, 160, 204, 198)(154, 159, 203, 197)(157, 164, 158,
163)(169, 181, 207, 184)(170, 182, 208, 183)(177, 178)(185, 189, 192, 220)(186,
190, 191, 219)
d: (1, 56)(2, 57)(3, 58)(4, 59)(5, 60)(6, 61)(7, 62)(8, 63)(9, 64)(10, 65)(11,
66)(12, 67)(13, 68)(14, 69)(15, 70)(16, 71)(17, 72)(18, 73)(19, 74)(20, 75)(21,
76)(22, 77)(23, 78)(24, 79)(25, 80)(26, 81)(27, 82)(28, 83)(29, 84)(30, 85)(31,
86)(32, 87)(33, 88)(34, 89)(35, 90)(36, 91)(37, 92)(38, 93)(39, 94)(40, 95)(41,
96)(42, 97)(43, 98)(44, 99)(45, 100)(46, 101)(47, 102)(48, 103)(49, 104)(50,
105)(51, 106)(52, 107)(53, 108)(54, 109)(55, 110)(111, 112)(113, 114)(115,
116)(117, 118)(119, 120)(121, 122)(123, 124)(125, 126)(127, 128)(129, 130)(131,
132)(133, 134)(135, 136)(137, 138)(139, 140)(141, 142)(143, 144)(145, 146)(147,
148)(149, 150)(151, 152)(153, 154)(155, 156)(157, 158)(159, 160)(161, 162)(163,
164)(165, 166)(167, 168)(169, 170)(171, 172)(173, 174)(175, 176)(177, 178)(179,
180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195,
196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211,
212)(213, 214)(215, 216)(217, 218)(219, 220)
C4[ 220, 17 ]
220
-1 166 134 213 171
-2 213 126 127 219
-3 144 139 206 219
-4 209 117 206 141
-5 209 134 191 161
-6 199 168 115 138
-7 199 201 118 164
-8 149 118 184 152
-9 220 135 119 152
-10 135 191 138 193
-11 156 181 216 140
-12 189 140 173 120
-13 203 214 195 120
-14 180 203 117 207
-15 198 180 193 216
-16 122 210 212 150
-17 177 127 150 208
-18 200 146 185 208
-19 154 146 172 119
-20 198 157 212 172
-21 125 136 217 196
-22 133 196 153 164
-23 132 111 139 153
-24 132 176 167 207
-25 167 124 157 125
-26 166 179 202 186
-27 137 173 175 186
-28 149 160 162 175
-29 154 155 169 162
-30 155 124 202 205
-31 112 190 115 171
-32 177 112 170 215
-33 187 170 192 195
-34 121 176 114 192
-35 121 190 205 151
-36 168 159 181 128
-37 133 211 113 159
-38 144 113 194 185
-39 169 194 129 218
-40 204 128 151 218
-41 188 210 156 163
-42 188 126 137 130
-43 111 184 130 197
-44 165 114 147 197
-45 165 145 204 163
-46 143 122 136 174
-47 143 201 148 215
-48 158 148 214 160
-49 158 116 129 141
-50 145 116 174 131
-51 178 179 183 217
-52 189 211 183 142
-53 187 123 200 142
-54 220 123 147 182
-55 178 182 161 131
-56 165 133 214 172
-57 220 125 214 128
-58 143 220 205 140
-59 210 205 118 142
-60 133 210 192 162
-61 167 200 137 116
-62 200 202 117 163
-63 117 150 183 151
-64 136 151 120 219
-65 136 137 192 194
-66 155 182 215 139
-67 190 139 119 174
-68 213 204 119 196
-69 179 204 118 208
-70 179 215 194 197
-71 121 209 211 149
-72 178 149 128 207
-73 199 145 207 186
-74 145 171 120 153
-75 211 158 171 197
-76 135 126 195 218
-77 154 134 195 163
-78 154 112 140 131
-79 168 131 175 208
-80 123 168 158 126
-81 165 201 180 185
-82 176 138 174 185
-83 176 159 150 161
-84 156 170 161 153
-85 123 156 201 206
-86 111 189 116 172
-87 111 178 169 216
-88 188 169 191 196
-89 122 113 191 175
-90 122 189 206 152
-91 167 127 160 182
-92 134 212 114 160
-93 143 114 193 186
-94 170 193 217 130
-95 203 127 217 152
-96 187 209 155 164
-97 187 125 138 129
-98 198 112 183 129
-99 198 166 113 148
-100 166 146 203 164
-101 121 144 135 173
-102 144 147 202 216
-103 157 147 213 159
-104 157 115 130 142
-105 132 146 115 173
-106 177 180 184 218
-107 190 212 184 141
-108 188 199 124 141
-109 124 148 181 219
-110 132 177 181 162
-111 23 86 43 87
-112 78 31 32 98
-113 99 89 37 38
-114 44 34 92 93
-115 104 6 105 31
-116 49 50 61 86
-117 14 4 62 63
-118 69 59 7 8
-119 67 68 19 9
-120 12 13 74 64
-121 34 35 101 71
-122 89 46 90 16
-123 80 85 53 54
-124 25 30 108 109
-125 57 25 97 21
-126 2 80 42 76
-127 2 91 17 95
-128 57 36 72 40
-129 49 39 97 98
-130 104 94 42 43
-131 55 78 79 50
-132 110 23 24 105
-133 22 56 37 60
-134 77 1 92 5
-135 101 9 10 76
-136 46 64 21 65
-137 27 61 42 65
-138 82 6 97 10
-139 66 23 67 3
-140 11 12 78 58
-141 4 49 107 108
-142 59 104 52 53
-143 46 47 58 93
-144 101 3 102 38
-145 45 50 73 74
-146 100 105 18 19
-147 44 102 103 54
-148 99 47 48 109
-149 71 28 72 8
-150 16 17 83 63
-151 35 40 63 64
-152 90 95 8 9
-153 22 23 84 74
-154 77 78 29 19
-155 66 29 30 96
-156 11 84 41 85
-157 25 103 104 20
-158 80 48 49 75
-159 36 37 103 83
-160 91 48 92 28
-161 55 5 83 84
-162 110 60 28 29
-163 77 45 62 41
-164 22 100 7 96
-165 44 45 56 81
-166 99 1 100 26
-167 24 25 91 61
-168 79 36 80 6
-169 88 39 29 87
-170 33 94 84 32
-171 1 74 31 75
-172 56 19 20 86
-173 12 101 27 105
-174 67 46 82 50
-175 89 79 27 28
-176 34 24 82 83
-177 110 17 106 32
-178 55 72 51 87
-179 69 26 70 51
-180 14 15 81 106
-181 11 110 36 109
-182 55 66 91 54
-183 51 52 63 98
-184 106 8 107 43
-185 81 38 82 18
-186 26 27 93 73
-187 33 96 53 97
-188 88 41 42 108
-189 12 90 52 86
-190 67 35 107 31
-191 88 89 5 10
-192 33 34 60 65
-193 15 93 94 10
-194 70 38 39 65
-195 33 77 13 76
-196 22 88 68 21
-197 44 70 75 43
-198 99 15 20 98
-199 6 7 73 108
-200 61 18 62 53
-201 47 81 7 85
-202 102 26 62 30
-203 100 13 14 95
-204 45 68 69 40
-205 35 58 59 30
-206 90 3 4 85
-207 24 14 72 73
-208 79 69 17 18
-209 4 5 71 96
-210 59 16 60 41
-211 37 71 52 75
-212 92 16 107 20
-213 1 2 68 103
-214 56 13 57 48
-215 66 47 70 32
-216 11 102 15 87
-217 94 51 95 21
-218 39 40 106 76
-219 2 3 64 109
-220 57 58 9 54
0