C4graphGraph forms for C4 [ 221, 2 ] = C_221(1,47)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 221, 2 ] = C_221(1,47).

(I) Following is a form readable by MAGMA:

g:=Graph<221|{ {2, 3}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {1, 2}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {3, 4}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104}, {119, 120}, {135, 136}, {15, 16}, {207, 208}, {175, 176}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {16, 63}, {64, 111}, {80, 127}, {128, 175}, {144, 191}, {1, 48}, {79, 126}, {77, 124}, {75, 122}, {73, 120}, {71, 118}, {69, 116}, {67, 114}, {65, 112}, {3, 50}, {5, 52}, {7, 54}, {9, 56}, {11, 58}, {13, 60}, {15, 62}, {129, 176}, {131, 178}, {133, 180}, {135, 182}, {137, 184}, {139, 186}, {141, 188}, {143, 190}, {2, 49}, {78, 125}, {74, 121}, {70, 117}, {66, 113}, {6, 53}, {10, 57}, {14, 61}, {130, 177}, {134, 181}, {138, 185}, {142, 189}, {4, 51}, {76, 123}, {68, 115}, {12, 59}, {132, 179}, {140, 187}, {8, 55}, {159, 160}, {72, 119}, {31, 32}, {95, 96}, {136, 183}, {17, 64}, {159, 206}, {157, 204}, {155, 202}, {153, 200}, {151, 198}, {63, 110}, {61, 108}, {59, 106}, {57, 104}, {55, 102}, {53, 100}, {51, 98}, {49, 96}, {19, 66}, {21, 68}, {23, 70}, {25, 72}, {27, 74}, {29, 76}, {31, 78}, {145, 192}, {147, 194}, {149, 196}, {18, 65}, {158, 205}, {154, 201}, {62, 109}, {58, 105}, {54, 101}, {50, 97}, {22, 69}, {26, 73}, {30, 77}, {146, 193}, {150, 197}, {20, 67}, {156, 203}, {60, 107}, {52, 99}, {28, 75}, {148, 195}, {24, 71}, {152, 199}, {56, 103}, {32, 79}, {160, 207}, {48, 95}, {33, 80}, {173, 220}, {171, 218}, {169, 216}, {167, 214}, {165, 212}, {163, 210}, {161, 208}, {47, 94}, {45, 92}, {35, 82}, {37, 84}, {39, 86}, {41, 88}, {43, 90}, {34, 81}, {174, 221}, {170, 217}, {166, 213}, {162, 209}, {46, 93}, {38, 85}, {42, 89}, {36, 83}, {172, 219}, {164, 211}, {44, 91}, {40, 87}, {191, 192}, {168, 215}, {63, 64}, {1, 175}, {16, 190}, {17, 191}, {2, 176}, {3, 177}, {6, 180}, {7, 181}, {10, 184}, {11, 185}, {14, 188}, {15, 189}, {4, 178}, {5, 179}, {12, 186}, {13, 187}, {8, 182}, {9, 183}, {81, 128}, {83, 130}, {85, 132}, {87, 134}, {89, 136}, {91, 138}, {93, 140}, {95, 142}, {113, 160}, {115, 162}, {117, 164}, {119, 166}, {121, 168}, {123, 170}, {125, 172}, {127, 174}, {18, 192}, {19, 193}, {22, 196}, {23, 197}, {26, 200}, {27, 201}, {30, 204}, {31, 205}, {82, 129}, {86, 133}, {90, 137}, {94, 141}, {114, 161}, {118, 165}, {122, 169}, {126, 173}, {20, 194}, {21, 195}, {28, 202}, {29, 203}, {84, 131}, {92, 139}, {116, 163}, {124, 171}, {1, 221}, {24, 198}, {25, 199}, {88, 135}, {120, 167}, {32, 206}, {33, 207}, {96, 143}, {112, 159}, {97, 144}, {99, 146}, {101, 148}, {103, 150}, {105, 152}, {107, 154}, {109, 156}, {111, 158}, {34, 208}, {47, 221}, {46, 220}, {43, 217}, {35, 209}, {38, 212}, {39, 213}, {42, 216}, {98, 145}, {102, 149}, {106, 153}, {110, 157}, {36, 210}, {45, 219}, {44, 218}, {37, 211}, {100, 147}, {108, 155}, {40, 214}, {41, 215}, {104, 151}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 48, 221, 175)(3, 95, 220, 128)(4, 142, 219, 81)(5, 189, 218, 34)(6, 15, 217, 208)(7, 62, 216, 161)(8, 109, 215, 114)(9, 156, 214, 67)(10, 203, 213, 20)(11, 29, 212, 194)(12, 76, 211, 147)(13, 123, 210, 100)(14, 170, 209, 53)(16, 43, 207, 180)(17, 90, 206, 133)(18, 137, 205, 86)(19, 184, 204, 39)(21, 57, 202, 166)(22, 104, 201, 119)(23, 151, 200, 72)(24, 198, 199, 25)(26, 71, 197, 152)(27, 118, 196, 105)(28, 165, 195, 58)(30, 38, 193, 185)(31, 85, 192, 138)(32, 132, 191, 91)(33, 179, 190, 44)(35, 52, 188, 171)(36, 99, 187, 124)(37, 146, 186, 77)(40, 66, 183, 157)(41, 113, 182, 110)(42, 160, 181, 63)(45, 80, 178, 143)(46, 127, 177, 96)(47, 174, 176, 49)(50, 94, 173, 129)(51, 141, 172, 82)(54, 61, 169, 162)(55, 108, 168, 115)(56, 155, 167, 68)(59, 75, 164, 148)(60, 122, 163, 101)(64, 89, 159, 134)(65, 136, 158, 87)(69, 103, 154, 120)(70, 150, 153, 73)(74, 117, 149, 106)(78, 84, 145, 139)(79, 131, 144, 92)(83, 98, 140, 125)(88, 112, 135, 111)(93, 126, 130, 97)(102, 107, 121, 116)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 221, 2 ]
221
-1 221 2 48 175
-2 176 1 3 49
-3 177 2 4 50
-4 178 3 5 51
-5 179 4 6 52
-6 180 5 7 53
-7 181 6 8 54
-8 55 182 7 9
-9 56 183 8 10
-10 11 57 184 9
-11 12 58 185 10
-12 11 13 59 186
-13 187 12 14 60
-14 188 13 15 61
-15 189 14 16 62
-16 190 15 17 63
-17 191 16 18 64
-18 192 17 19 65
-19 66 193 18 20
-20 67 194 19 21
-21 22 68 195 20
-22 23 69 196 21
-23 22 24 70 197
-24 198 23 25 71
-25 199 24 26 72
-26 200 25 27 73
-27 201 26 28 74
-28 202 27 29 75
-29 203 28 30 76
-30 77 204 29 31
-31 78 205 30 32
-32 33 79 206 31
-33 34 80 207 32
-34 33 35 81 208
-35 209 34 36 82
-36 210 35 37 83
-37 211 36 38 84
-38 212 37 39 85
-39 213 38 40 86
-40 214 39 41 87
-41 88 215 40 42
-42 89 216 41 43
-43 44 90 217 42
-44 45 91 218 43
-45 44 46 92 219
-46 220 45 47 93
-47 221 46 48 94
-48 1 47 49 95
-49 2 48 50 96
-50 3 49 51 97
-51 4 50 52 98
-52 99 5 51 53
-53 100 6 52 54
-54 55 101 7 53
-55 56 102 8 54
-56 55 57 103 9
-57 56 58 104 10
-58 11 57 59 105
-59 12 58 60 106
-60 13 59 61 107
-61 14 60 62 108
-62 15 61 63 109
-63 110 16 62 64
-64 111 17 63 65
-65 66 112 18 64
-66 67 113 19 65
-67 66 68 114 20
-68 67 69 115 21
-69 22 68 70 116
-70 23 69 71 117
-71 24 70 72 118
-72 25 71 73 119
-73 26 72 74 120
-74 121 27 73 75
-75 122 28 74 76
-76 77 123 29 75
-77 78 124 30 76
-78 77 79 125 31
-79 78 80 126 32
-80 33 79 81 127
-81 34 80 82 128
-82 35 81 83 129
-83 36 82 84 130
-84 37 83 85 131
-85 132 38 84 86
-86 133 39 85 87
-87 88 134 40 86
-88 89 135 41 87
-89 88 90 136 42
-90 89 91 137 43
-91 44 90 92 138
-92 45 91 93 139
-93 46 92 94 140
-94 47 93 95 141
-95 48 94 96 142
-96 143 49 95 97
-97 144 50 96 98
-98 99 145 51 97
-99 100 146 52 98
-100 99 101 147 53
-101 100 102 148 54
-102 55 101 103 149
-103 56 102 104 150
-104 57 103 105 151
-105 58 104 106 152
-106 59 105 107 153
-107 154 60 106 108
-108 155 61 107 109
-109 110 156 62 108
-110 111 157 63 109
-111 110 112 158 64
-112 111 113 159 65
-113 66 112 114 160
-114 67 113 115 161
-115 68 114 116 162
-116 69 115 117 163
-117 70 116 118 164
-118 165 71 117 119
-119 166 72 118 120
-120 121 167 73 119
-121 122 168 74 120
-122 121 123 169 75
-123 122 124 170 76
-124 77 123 125 171
-125 78 124 126 172
-126 79 125 127 173
-127 80 126 128 174
-128 81 127 129 175
-129 176 82 128 130
-130 177 83 129 131
-131 132 178 84 130
-132 133 179 85 131
-133 132 134 180 86
-134 133 135 181 87
-135 88 134 136 182
-136 89 135 137 183
-137 90 136 138 184
-138 91 137 139 185
-139 92 138 140 186
-140 187 93 139 141
-141 188 94 140 142
-142 143 189 95 141
-143 144 190 96 142
-144 143 145 191 97
-145 144 146 192 98
-146 99 145 147 193
-147 100 146 148 194
-148 101 147 149 195
-149 102 148 150 196
-150 103 149 151 197
-151 198 104 150 152
-152 199 105 151 153
-153 154 200 106 152
-154 155 201 107 153
-155 154 156 202 108
-156 155 157 203 109
-157 110 156 158 204
-158 111 157 159 205
-159 112 158 160 206
-160 113 159 161 207
-161 114 160 162 208
-162 209 115 161 163
-163 210 116 162 164
-164 165 211 117 163
-165 166 212 118 164
-166 165 167 213 119
-167 166 168 214 120
-168 121 167 169 215
-169 122 168 170 216
-170 123 169 171 217
-171 124 170 172 218
-172 125 171 173 219
-173 220 126 172 174
-174 221 127 173 175
-175 176 1 128 174
-176 177 2 129 175
-177 176 178 3 130
-178 177 179 4 131
-179 132 178 180 5
-180 133 179 181 6
-181 134 180 182 7
-182 135 181 183 8
-183 136 182 184 9
-184 137 183 185 10
-185 11 138 184 186
-186 187 12 139 185
-187 188 13 140 186
-188 187 189 14 141
-189 188 190 15 142
-190 143 189 191 16
-191 144 190 192 17
-192 145 191 193 18
-193 146 192 194 19
-194 147 193 195 20
-195 148 194 196 21
-196 22 149 195 197
-197 198 23 150 196
-198 199 24 151 197
-199 198 200 25 152
-200 199 201 26 153
-201 154 200 202 27
-202 155 201 203 28
-203 156 202 204 29
-204 157 203 205 30
-205 158 204 206 31
-206 159 205 207 32
-207 33 160 206 208
-208 209 34 161 207
-209 210 35 162 208
-210 209 211 36 163
-211 210 212 37 164
-212 165 211 213 38
-213 166 212 214 39
-214 167 213 215 40
-215 168 214 216 41
-216 169 215 217 42
-217 170 216 218 43
-218 44 171 217 219
-219 220 45 172 218
-220 221 46 173 219
-221 220 1 47 174
0

**************