C4graphGraph forms for C4 [ 224, 17 ] = PL(MSY(14,8,3,0))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 224, 17 ] = PL(MSY(14,8,3,0)).

(I) Following is a form readable by MAGMA:

g:=Graph<224|{ {106, 126}, {107, 127}, {106, 127}, {105, 126}, {105, 113}, {106, 113}, {97, 125}, {98, 126}, {97, 126}, {98, 125}, {89, 125}, {89, 124}, {90, 124}, {90, 125}, {82, 123}, {81, 123}, {81, 124}, {82, 124}, {74, 122}, {74, 123}, {73, 123}, {73, 122}, {65, 121}, {66, 122}, {65, 122}, {66, 121}, {57, 121}, {57, 120}, {58, 120}, {58, 121}, {50, 119}, {49, 119}, {49, 120}, {50, 120}, {33, 117}, {34, 118}, {33, 118}, {34, 117}, {42, 118}, {42, 119}, {41, 119}, {41, 118}, {18, 115}, {17, 115}, {17, 116}, {18, 116}, {25, 117}, {25, 116}, {26, 116}, {26, 117}, {1, 113}, {2, 114}, {1, 114}, {2, 113}, {10, 114}, {10, 115}, {5, 127}, {9, 115}, {4, 127}, {9, 114}, {46, 174}, {62, 190}, {63, 191}, {79, 207}, {46, 175}, {62, 191}, {63, 190}, {65, 192}, {79, 206}, {12, 142}, {45, 175}, {34, 160}, {29, 159}, {28, 158}, {12, 143}, {83, 208}, {45, 174}, {35, 160}, {29, 158}, {28, 159}, {4, 128}, {84, 208}, {11, 143}, {5, 128}, {53, 176}, {11, 142}, {8, 141}, {56, 189}, {8, 142}, {102, 224}, {89, 223}, {54, 176}, {56, 190}, {23, 144}, {103, 224}, {89, 222}, {24, 144}, {86, 222}, {38, 174}, {37, 173}, {72, 192}, {7, 142}, {105, 224}, {87, 222}, {68, 205}, {7, 141}, {87, 221}, {27, 145}, {11, 129}, {10, 128}, {68, 206}, {10, 129}, {86, 221}, {38, 173}, {37, 174}, {27, 144}, {11, 128}, {18, 158}, {49, 189}, {45, 161}, {44, 160}, {28, 144}, {61, 177}, {64, 204}, {80, 220}, {19, 158}, {45, 160}, {44, 161}, {28, 145}, {61, 176}, {64, 205}, {67, 206}, {80, 221}, {19, 157}, {95, 209}, {62, 176}, {67, 205}, {78, 192}, {79, 193}, {18, 157}, {95, 208}, {49, 190}, {62, 177}, {78, 193}, {79, 192}, {12, 156}, {112, 224}, {50, 162}, {13, 157}, {81, 193}, {12, 157}, {51, 162}, {13, 156}, {46, 188}, {51, 161}, {47, 189}, {40, 187}, {50, 161}, {47, 188}, {46, 189}, {81, 194}, {21, 129}, {40, 188}, {73, 221}, {20, 129}, {73, 220}, {20, 130}, {21, 130}, {24, 143}, {3, 155}, {27, 131}, {26, 130}, {23, 143}, {2, 155}, {88, 193}, {54, 175}, {27, 130}, {26, 131}, {33, 187}, {88, 194}, {53, 175}, {64, 218}, {70, 220}, {64, 219}, {84, 207}, {71, 220}, {71, 219}, {95, 195}, {94, 194}, {83, 207}, {33, 188}, {95, 194}, {94, 195}, {70, 219}, {2, 156}, {60, 162}, {61, 163}, {80, 206}, {3, 156}, {60, 163}, {61, 162}, {80, 207}, {36, 132}, {24, 185}, {37, 132}, {24, 186}, {112, 210}, {97, 195}, {55, 148}, {112, 211}, {14, 170}, {31, 187}, {30, 186}, {55, 147}, {14, 171}, {97, 196}, {31, 186}, {30, 187}, {13, 171}, {37, 131}, {13, 170}, {36, 131}, {17, 185}, {60, 148}, {60, 149}, {110, 196}, {111, 197}, {17, 186}, {111, 196}, {104, 195}, {56, 147}, {5, 169}, {104, 196}, {6, 170}, {56, 148}, {42, 132}, {43, 133}, {59, 149}, {5, 170}, {43, 132}, {42, 133}, {6, 169}, {59, 148}, {8, 184}, {96, 208}, {53, 133}, {29, 173}, {29, 172}, {99, 210}, {96, 209}, {52, 133}, {30, 172}, {99, 209}, {52, 134}, {30, 173}, {53, 134}, {39, 146}, {112, 197}, {100, 209}, {1, 183}, {100, 210}, {39, 145}, {15, 185}, {14, 184}, {14, 185}, {15, 184}, {43, 147}, {103, 223}, {1, 184}, {102, 223}, {43, 146}, {40, 145}, {21, 172}, {22, 172}, {105, 211}, {40, 146}, {35, 159}, {58, 134}, {59, 135}, {22, 171}, {111, 210}, {34, 159}, {58, 135}, {59, 134}, {21, 171}, {96, 222}, {44, 146}, {8, 183}, {96, 223}, {44, 147}, {22, 214}, {88, 152}, {87, 151}, {4, 197}, {23, 214}, {4, 198}, {91, 153}, {23, 213}, {69, 135}, {74, 136}, {75, 137}, {22, 213}, {91, 152}, {68, 135}, {74, 137}, {75, 136}, {16, 212}, {109, 169}, {108, 168}, {99, 167}, {92, 152}, {3, 198}, {109, 168}, {98, 167}, {92, 153}, {16, 213}, {3, 197}, {110, 169}, {15, 199}, {15, 198}, {98, 168}, {99, 168}, {68, 136}, {69, 136}, {25, 215}, {25, 214}, {88, 151}, {87, 152}, {90, 138}, {102, 182}, {101, 181}, {91, 139}, {71, 150}, {91, 138}, {90, 139}, {6, 212}, {71, 149}, {7, 212}, {102, 181}, {101, 182}, {20, 199}, {7, 211}, {19, 199}, {6, 211}, {16, 198}, {31, 201}, {16, 199}, {31, 200}, {110, 182}, {111, 183}, {110, 183}, {76, 150}, {19, 200}, {109, 182}, {76, 151}, {9, 213}, {85, 137}, {20, 200}, {75, 151}, {9, 212}, {84, 137}, {72, 149}, {75, 150}, {72, 150}, {84, 138}, {85, 138}, {67, 163}, {66, 163}, {108, 141}, {85, 180}, {57, 219}, {86, 180}, {57, 218}, {47, 203}, {47, 202}, {86, 179}, {66, 164}, {107, 141}, {106, 140}, {85, 179}, {67, 164}, {107, 140}, {32, 200}, {100, 140}, {93, 181}, {48, 216}, {76, 164}, {77, 165}, {32, 201}, {101, 140}, {93, 180}, {48, 217}, {35, 202}, {76, 165}, {77, 164}, {35, 201}, {94, 180}, {94, 181}, {54, 218}, {36, 201}, {55, 218}, {36, 202}, {101, 139}, {55, 217}, {54, 217}, {100, 139}, {39, 215}, {41, 217}, {38, 215}, {107, 154}, {104, 153}, {41, 216}, {63, 205}, {104, 154}, {63, 204}, {69, 177}, {82, 166}, {70, 178}, {83, 166}, {32, 214}, {109, 155}, {108, 154}, {83, 165}, {32, 215}, {108, 155}, {69, 178}, {70, 177}, {72, 191}, {82, 165}, {51, 203}, {52, 204}, {48, 202}, {93, 167}, {92, 166}, {48, 203}, {93, 166}, {92, 167}, {78, 178}, {78, 179}, {103, 154}, {38, 216}, {103, 153}, {65, 191}, {77, 179}, {39, 216}, {52, 203}, {51, 204}, {77, 178} }>;

(II) A more general form is to represent the graph as the orbit of {106, 126} under the group generated by the following permutations:

a: (9, 105)(10, 106)(11, 107)(12, 108)(13, 109)(14, 110)(15, 111)(16, 112)(17, 97)(18, 98)(19, 99)(20, 100)(21, 101)(22, 102)(23, 103)(24, 104)(25, 89)(26, 90)(27, 91)(28, 92)(29, 93)(30, 94)(31, 95)(32, 96)(33, 81)(34, 82)(35, 83)(36, 84)(37, 85)(38, 86)(39, 87)(40, 88)(41, 73)(42, 74)(43, 75)(44, 76)(45, 77)(46, 78)(47, 79)(48, 80)(49, 65)(50, 66)(51, 67)(52, 68)(53, 69)(54, 70)(55, 71)(56, 72)(113, 114)(115, 126)(116, 125)(117, 124)(118, 123)(119, 122)(120, 121)(127, 128)(129, 140)(130, 139)(131, 138)(132, 137)(133, 136)(134, 135)(141, 142)(143, 154)(144, 153)(145, 152)(146, 151)(147, 150)(148, 149)(155, 156)(157, 168)(158, 167)(159, 166)(160, 165)(161, 164)(162, 163)(169, 170)(171, 182)(172, 181)(173, 180)(174, 179)(175, 178)(176, 177)(183, 184)(185, 196)(186, 195)(187, 194)(188, 193)(189, 192)(190, 191)(197, 198)(199, 210)(200, 209)(201, 208)(202, 207)(203, 206)(204, 205)(211, 212)(213, 224)(214, 223)(215, 222)(216, 221)(217, 220)(218, 219)
b: (2, 8)(3, 7)(4, 6)(9, 15)(10, 14)(11, 13)(18, 24)(19, 23)(20, 22)(25, 31)(26, 30)(27, 29)(34, 40)(35, 39)(36, 38)(41, 47)(42, 46)(43, 45)(50, 56)(51, 55)(52, 54)(57, 63)(58, 62)(59, 61)(66, 72)(67, 71)(68, 70)(73, 79)(74, 78)(75, 77)(82, 88)(83, 87)(84, 86)(89, 95)(90, 94)(91, 93)(98, 104)(99, 103)(100, 102)(105, 111)(106, 110)(107, 109)(113, 183)(114, 184)(115, 185)(116, 186)(117, 187)(118, 188)(119, 189)(120, 190)(121, 191)(122, 192)(123, 193)(124, 194)(125, 195)(126, 196)(127, 169)(128, 170)(129, 171)(130, 172)(131, 173)(132, 174)(133, 175)(134, 176)(135, 177)(136, 178)(137, 179)(138, 180)(139, 181)(140, 182)(141, 155)(142, 156)(143, 157)(144, 158)(145, 159)(146, 160)(147, 161)(148, 162)(149, 163)(150, 164)(151, 165)(152, 166)(153, 167)(154, 168)(197, 211)(198, 212)(199, 213)(200, 214)(201, 215)(202, 216)(203, 217)(204, 218)(205, 219)(206, 220)(207, 221)(208, 222)(209, 223)(210, 224)
c: (1, 2, 3, 4, 5, 6, 7, 8)(9, 12, 15, 10, 13, 16, 11, 14)(17, 18, 19, 20, 21, 22, 23, 24)(25, 28, 31, 26, 29, 32, 27, 30)(33, 34, 35, 36, 37, 38, 39, 40)(41, 44, 47, 42, 45, 48, 43, 46)(49, 50, 51, 52, 53, 54, 55, 56)(57, 60, 63, 58, 61, 64, 59, 62)(65, 66, 67, 68, 69, 70, 71, 72)(73, 76, 79, 74, 77, 80, 75, 78)(81, 82, 83, 84, 85, 86, 87, 88)(89, 92, 95, 90, 93, 96, 91, 94)(97, 98, 99, 100, 101, 102, 103, 104)(105, 108, 111, 106, 109, 112, 107, 110)(113, 155, 197, 127, 169, 211, 141, 183)(114, 156, 198, 128, 170, 212, 142, 184)(115, 157, 199, 129, 171, 213, 143, 185)(116, 158, 200, 130, 172, 214, 144, 186)(117, 159, 201, 131, 173, 215, 145, 187)(118, 160, 202, 132, 174, 216, 146, 188)(119, 161, 203, 133, 175, 217, 147, 189)(120, 162, 204, 134, 176, 218, 148, 190)(121, 163, 205, 135, 177, 219, 149, 191)(122, 164, 206, 136, 178, 220, 150, 192)(123, 165, 207, 137, 179, 221, 151, 193)(124, 166, 208, 138, 180, 222, 152, 194)(125, 167, 209, 139, 181, 223, 153, 195)(126, 168, 210, 140, 182, 224, 154, 196)
d: (1, 9, 23, 27, 37, 45, 51, 63, 65, 73, 87, 91, 101, 109, 3, 15, 17, 25, 39, 43, 53, 61, 67, 79, 81, 89, 103, 107, 5, 13, 19, 31, 33, 41, 55, 59, 69, 77, 83, 95, 97, 105, 7, 11, 21, 29, 35, 47, 49, 57, 71, 75, 85, 93, 99, 111)(2, 16, 24, 26, 38, 44, 52, 62, 66, 80, 88, 90, 102, 108, 4, 14, 18, 32, 40, 42, 54, 60, 68, 78, 82, 96, 104, 106, 6, 12, 20, 30, 34, 48, 56, 58, 70, 76, 84, 94, 98, 112, 8, 10, 22, 28, 36, 46, 50, 64, 72, 74, 86, 92, 100, 110)(113, 212, 143, 130, 173, 160, 203, 190, 121, 220, 151, 138, 181, 168, 197, 184, 115, 214, 145, 132, 175, 162, 205, 192, 123, 222, 153, 140, 169, 156, 199, 186, 117, 216, 147, 134, 177, 164, 207, 194, 125, 224, 141, 128, 171, 158, 201, 188, 119, 218, 149, 136, 179, 166, 209, 196)(114, 213, 144, 131, 174, 161, 204, 191, 122, 221, 152, 139, 182, 155, 198, 185, 116, 215, 146, 133, 176, 163, 206, 193, 124, 223, 154, 127, 170, 157, 200, 187, 118, 217, 148, 135, 178, 165, 208, 195, 126, 211, 142, 129, 172, 159, 202, 189, 120, 219, 150, 137, 180, 167, 210, 183)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 224, 17 ]
224
-1 113 114 183 184
-2 155 156 113 114
-3 198 155 156 197
-4 198 127 128 197
-5 169 170 127 128
-6 211 212 169 170
-7 211 212 141 142
-8 183 184 141 142
-9 212 114 213 115
-10 114 115 128 129
-11 143 128 129 142
-12 143 156 157 142
-13 156 157 170 171
-14 170 171 184 185
-15 198 199 184 185
-16 198 199 212 213
-17 115 116 185 186
-18 157 158 115 116
-19 199 200 157 158
-20 199 200 129 130
-21 171 172 129 130
-22 213 214 171 172
-23 143 144 213 214
-24 143 144 185 186
-25 214 116 215 117
-26 116 117 130 131
-27 144 145 130 131
-28 144 145 158 159
-29 158 159 172 173
-30 187 172 173 186
-31 187 200 201 186
-32 200 201 214 215
-33 187 188 117 118
-34 159 160 117 118
-35 201 202 159 160
-36 132 201 202 131
-37 132 173 174 131
-38 215 216 173 174
-39 145 146 215 216
-40 187 188 145 146
-41 216 118 217 119
-42 132 133 118 119
-43 132 133 146 147
-44 146 147 160 161
-45 160 161 174 175
-46 188 189 174 175
-47 188 189 202 203
-48 202 203 216 217
-49 189 190 119 120
-50 161 162 119 120
-51 203 204 161 162
-52 133 134 203 204
-53 176 133 134 175
-54 176 217 218 175
-55 147 148 217 218
-56 189 190 147 148
-57 121 218 120 219
-58 121 134 135 120
-59 134 135 148 149
-60 148 149 162 163
-61 176 177 162 163
-62 176 177 190 191
-63 190 191 204 205
-64 204 205 218 219
-65 121 122 191 192
-66 121 122 163 164
-67 205 206 163 164
-68 135 136 205 206
-69 177 178 135 136
-70 220 177 178 219
-71 220 149 150 219
-72 191 192 149 150
-73 220 122 221 123
-74 122 123 136 137
-75 136 137 150 151
-76 165 150 151 164
-77 165 178 179 164
-78 178 179 192 193
-79 192 193 206 207
-80 220 221 206 207
-81 123 124 193 194
-82 165 166 123 124
-83 165 166 207 208
-84 137 138 207 208
-85 179 180 137 138
-86 221 222 179 180
-87 221 222 151 152
-88 193 194 151 152
-89 222 124 223 125
-90 124 125 138 139
-91 138 139 152 153
-92 166 167 152 153
-93 166 167 180 181
-94 180 181 194 195
-95 209 194 195 208
-96 209 222 223 208
-97 125 126 195 196
-98 167 168 125 126
-99 209 210 167 168
-100 209 210 139 140
-101 181 182 139 140
-102 223 224 181 182
-103 154 223 224 153
-104 154 195 196 153
-105 211 113 224 126
-106 113 126 127 140
-107 154 127 140 141
-108 154 155 168 141
-109 155 168 169 182
-110 169 182 183 196
-111 210 183 196 197
-112 210 211 224 197
-113 1 2 105 106
-114 1 2 9 10
-115 17 18 9 10
-116 25 26 17 18
-117 33 34 25 26
-118 33 34 41 42
-119 49 50 41 42
-120 57 58 49 50
-121 66 57 58 65
-122 66 73 74 65
-123 81 82 73 74
-124 89 90 81 82
-125 89 90 97 98
-126 105 106 97 98
-127 4 5 106 107
-128 11 4 5 10
-129 11 20 10 21
-130 26 27 20 21
-131 36 26 37 27
-132 36 37 42 43
-133 52 42 53 43
-134 58 59 52 53
-135 68 58 69 59
-136 68 69 74 75
-137 84 74 85 75
-138 90 91 84 85
-139 100 90 101 91
-140 100 101 106 107
-141 7 8 107 108
-142 11 12 7 8
-143 11 12 23 24
-144 23 24 27 28
-145 27 28 39 40
-146 44 39 40 43
-147 44 55 56 43
-148 55 56 59 60
-149 59 60 71 72
-150 71 72 75 76
-151 88 75 76 87
-152 88 91 92 87
-153 91 92 103 104
-154 103 104 107 108
-155 2 3 108 109
-156 12 2 13 3
-157 12 13 18 19
-158 28 18 29 19
-159 34 35 28 29
-160 44 34 45 35
-161 44 45 50 51
-162 60 50 61 51
-163 66 67 60 61
-164 66 77 67 76
-165 77 82 83 76
-166 92 82 93 83
-167 99 92 93 98
-168 99 108 98 109
-169 110 5 6 109
-170 13 14 5 6
-171 22 13 14 21
-172 22 29 30 21
-173 37 38 29 30
-174 45 46 37 38
-175 45 46 53 54
-176 61 62 53 54
-177 69 70 61 62
-178 77 78 69 70
-179 77 78 85 86
-180 93 94 85 86
-181 101 102 93 94
-182 110 101 102 109
-183 110 1 111 8
-184 1 14 15 8
-185 24 14 15 17
-186 24 17 30 31
-187 33 40 30 31
-188 33 46 47 40
-189 56 46 47 49
-190 56 49 62 63
-191 72 62 63 65
-192 78 79 72 65
-193 88 78 79 81
-194 88 81 94 95
-195 104 94 95 97
-196 110 111 104 97
-197 111 112 3 4
-198 3 4 15 16
-199 15 16 19 20
-200 19 20 31 32
-201 35 36 31 32
-202 35 36 47 48
-203 47 48 51 52
-204 51 52 63 64
-205 67 68 63 64
-206 67 68 79 80
-207 79 80 83 84
-208 83 84 95 96
-209 99 100 95 96
-210 99 100 111 112
-211 112 6 105 7
-212 16 6 7 9
-213 22 23 16 9
-214 22 23 25 32
-215 25 38 39 32
-216 48 38 39 41
-217 55 48 41 54
-218 55 57 64 54
-219 57 70 71 64
-220 80 70 71 73
-221 80 73 86 87
-222 89 96 86 87
-223 89 102 103 96
-224 112 102 103 105
0

**************