C4graphGraph forms for C4 [ 224, 19 ] = PL(MC3(14,8,1,5,3,0,1),[4^28,14^8])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 224, 19 ] = PL(MC3(14,8,1,5,3,0,1),[4^28,14^8]).

(I) Following is a form readable by MAGMA:

g:=Graph<224|{ {112, 114}, {112, 116}, {108, 124}, {103, 118}, {110, 127}, {105, 120}, {101, 119}, {98, 113}, {106, 121}, {105, 125}, {102, 115}, {109, 123}, {111, 121}, {98, 122}, {97, 120}, {107, 114}, {103, 126}, {101, 124}, {111, 117}, {108, 119}, {97, 125}, {102, 123}, {109, 115}, {106, 117}, {107, 116}, {90, 122}, {95, 126}, {93, 127}, {95, 118}, {90, 113}, {34, 119}, {34, 126}, {16, 116}, {25, 126}, {17, 120}, {24, 113}, {16, 122}, {24, 114}, {25, 119}, {3, 115}, {8, 122}, {9, 123}, {6, 117}, {2, 118}, {14, 120}, {1, 118}, {10, 125}, {4, 115}, {3, 121}, {7, 125}, {5, 127}, {8, 116}, {9, 117}, {1, 124}, {15, 114}, {6, 123}, {4, 121}, {1, 127}, {15, 113}, {2, 124}, {21, 149}, {38, 167}, {7, 130}, {46, 171}, {66, 199}, {39, 161}, {86, 208}, {79, 201}, {77, 203}, {14, 137}, {83, 212}, {30, 153}, {73, 206}, {74, 205}, {10, 130}, {78, 198}, {73, 193}, {25, 144}, {37, 172}, {7, 141}, {74, 192}, {23, 156}, {51, 184}, {43, 160}, {26, 145}, {71, 204}, {28, 144}, {42, 166}, {31, 146}, {41, 164}, {33, 175}, {36, 170}, {62, 176}, {45, 162}, {77, 194}, {32, 176}, {88, 200}, {26, 139}, {54, 167}, {55, 166}, {36, 182}, {75, 217}, {27, 136}, {92, 207}, {76, 223}, {68, 215}, {69, 214}, {12, 152}, {34, 182}, {24, 140}, {56, 172}, {3, 150}, {95, 202}, {89, 204}, {82, 199}, {63, 170}, {67, 214}, {19, 133}, {87, 193}, {83, 197}, {76, 218}, {65, 215}, {22, 129}, {90, 205}, {27, 140}, {67, 212}, {68, 211}, {17, 137}, {94, 198}, {92, 196}, {91, 195}, {27, 131}, {67, 219}, {34, 187}, {87, 206}, {40, 177}, {57, 160}, {69, 220}, {72, 209}, {5, 159}, {90, 192}, {46, 180}, {28, 134}, {20, 142}, {6, 156}, {64, 218}, {13, 150}, {81, 202}, {37, 190}, {35, 184}, {27, 128}, {24, 131}, {59, 160}, {72, 211}, {11, 151}, {78, 210}, {65, 221}, {32, 189}, {40, 181}, {1, 159}, {52, 170}, {50, 172}, {19, 141}, {58, 164}, {64, 222}, {8, 151}, {49, 174}, {47, 176}, {36, 187}, {35, 188}, {25, 134}, {14, 145}, {43, 139}, {18, 179}, {96, 194}, {12, 175}, {38, 133}, {18, 177}, {55, 148}, {7, 163}, {107, 207}, {8, 173}, {18, 183}, {13, 168}, {56, 157}, {11, 173}, {99, 197}, {70, 224}, {18, 181}, {41, 142}, {30, 185}, {29, 186}, {63, 152}, {49, 153}, {97, 201}, {51, 155}, {59, 147}, {60, 148}, {22, 191}, {106, 195}, {38, 143}, {29, 180}, {23, 190}, {3, 168}, {96, 203}, {50, 153}, {44, 135}, {42, 129}, {14, 165}, {17, 188}, {101, 200}, {52, 154}, {6, 169}, {107, 196}, {2, 178}, {48, 128}, {30, 174}, {22, 166}, {20, 164}, {19, 163}, {10, 186}, {47, 158}, {59, 138}, {39, 149}, {54, 132}, {13, 185}, {48, 132}, {21, 161}, {11, 189}, {102, 208}, {29, 171}, {57, 143}, {61, 138}, {15, 183}, {48, 136}, {44, 148}, {43, 147}, {37, 157}, {35, 155}, {33, 152}, {54, 143}, {61, 132}, {5, 191}, {48, 138}, {58, 128}, {61, 135}, {60, 135}, {15, 179}, {61, 129}, {31, 162}, {12, 178}, {36, 154}, {32, 158}, {23, 169}, {26, 165}, {45, 146}, {16, 208}, {109, 173}, {75, 138}, {10, 200}, {103, 165}, {88, 154}, {76, 142}, {70, 132}, {86, 149}, {96, 163}, {4, 192}, {82, 150}, {76, 136}, {20, 208}, {9, 205}, {12, 201}, {87, 144}, {13, 197}, {87, 159}, {71, 143}, {41, 224}, {91, 146}, {84, 157}, {81, 152}, {74, 128}, {2, 201}, {98, 169}, {4, 207}, {11, 199}, {100, 168}, {9, 196}, {83, 158}, {5, 203}, {108, 163}, {28, 204}, {23, 198}, {100, 181}, {80, 129}, {31, 205}, {92, 142}, {16, 195}, {64, 147}, {70, 149}, {79, 155}, {99, 183}, {92, 136}, {89, 141}, {21, 192}, {86, 131}, {80, 133}, {29, 200}, {54, 224}, {93, 139}, {20, 195}, {91, 140}, {80, 135}, {55, 224}, {93, 133}, {112, 168}, {111, 183}, {68, 157}, {101, 188}, {100, 189}, {75, 146}, {21, 207}, {104, 178}, {97, 187}, {65, 155}, {17, 202}, {93, 134}, {80, 139}, {31, 196}, {30, 197}, {26, 193}, {66, 153}, {19, 206}, {99, 190}, {22, 203}, {67, 158}, {73, 148}, {28, 194}, {109, 179}, {104, 182}, {77, 147}, {69, 154}, {44, 204}, {53, 212}, {104, 137}, {85, 180}, {84, 181}, {57, 216}, {58, 216}, {59, 217}, {62, 220}, {37, 198}, {85, 182}, {82, 177}, {52, 215}, {50, 209}, {60, 223}, {49, 213}, {88, 188}, {79, 171}, {53, 209}, {56, 220}, {58, 222}, {63, 219}, {70, 162}, {51, 214}, {102, 131}, {95, 186}, {53, 211}, {106, 140}, {89, 191}, {57, 223}, {60, 218}, {32, 199}, {110, 137}, {94, 185}, {85, 178}, {52, 211}, {53, 210}, {64, 167}, {71, 160}, {38, 206}, {110, 134}, {51, 219}, {35, 202}, {84, 189}, {43, 193}, {104, 130}, {103, 141}, {77, 167}, {75, 161}, {49, 219}, {63, 213}, {65, 171}, {68, 174}, {69, 175}, {62, 213}, {81, 186}, {62, 210}, {112, 156}, {110, 130}, {83, 190}, {94, 179}, {85, 184}, {44, 194}, {55, 217}, {56, 214}, {66, 172}, {74, 164}, {50, 221}, {73, 166}, {33, 209}, {41, 217}, {72, 184}, {96, 145}, {42, 216}, {47, 221}, {46, 220}, {45, 222}, {94, 173}, {66, 177}, {42, 222}, {99, 151}, {98, 150}, {86, 162}, {79, 187}, {105, 159}, {45, 218}, {88, 175}, {78, 185}, {39, 223}, {111, 151}, {100, 156}, {47, 215}, {71, 191}, {105, 144}, {40, 210}, {91, 161}, {84, 174}, {46, 213}, {82, 169}, {81, 170}, {33, 221}, {89, 165}, {40, 212}, {72, 180}, {108, 145}, {78, 176}, {39, 216} }>;

(II) A more general form is to represent the graph as the orbit of {112, 114} under the group generated by the following permutations:

a: (2, 5)(3, 8)(4, 11)(6, 15)(7, 14)(9, 18)(10, 26)(12, 22)(13, 16)(17, 19)(20, 30)(21, 32)(23, 24)(27, 37)(28, 34)(29, 43)(31, 40)(33, 42)(35, 38)(36, 44)(39, 47)(41, 49)(45, 53)(46, 59)(48, 56)(50, 58)(51, 54)(52, 60)(55, 63)(57, 65)(61, 69)(62, 75)(64, 72)(66, 74)(67, 70)(68, 76)(71, 79)(73, 81)(77, 85)(78, 91)(80, 88)(82, 90)(83, 86)(84, 92)(87, 95)(89, 97)(93, 101)(94, 106)(96, 104)(99, 102)(100, 107)(103, 105)(108, 110)(109, 111)(113, 169)(114, 156)(115, 151)(116, 168)(117, 179)(118, 159)(119, 134)(120, 141)(121, 173)(122, 150)(123, 183)(124, 127)(125, 165)(126, 144)(128, 172)(129, 175)(130, 145)(131, 190)(132, 214)(133, 188)(135, 154)(136, 157)(137, 163)(138, 220)(139, 200)(140, 198)(142, 174)(143, 155)(146, 210)(147, 180)(148, 170)(149, 158)(152, 166)(153, 164)(160, 171)(161, 176)(162, 212)(167, 184)(177, 205)(178, 203)(181, 196)(182, 194)(185, 195)(186, 193)(187, 204)(189, 207)(191, 201)(192, 199)(197, 208)(202, 206)(209, 222)(211, 218)(213, 217)(215, 223)(216, 221)(219, 224)
b: (7, 14)(10, 17)(19, 26)(29, 35)(38, 43)(46, 51)(54, 59)(62, 67)(70, 75)(78, 83)(86, 91)(94, 99)(102, 106)(109, 111)(115, 121)(117, 123)(120, 125)(130, 137)(131, 140)(132, 138)(133, 139)(141, 165)(143, 160)(145, 163)(146, 162)(147, 167)(149, 161)(151, 173)(155, 171)(158, 176)(179, 183)(180, 184)(185, 197)(186, 202)(188, 200)(190, 198)(193, 206)(195, 208)(210, 212)(213, 219)(214, 220)(217, 224)
c: (1, 3, 14, 15, 25, 6, 7, 8)(2, 4, 17, 24, 34, 9, 10, 16)(5, 13, 26, 18, 28, 23, 19, 11)(12, 21, 35, 27, 36, 31, 29, 20)(22, 30, 43, 40, 44, 37, 38, 32)(33, 39, 51, 48, 52, 45, 46, 41)(42, 49, 59, 53, 60, 56, 54, 47)(50, 57, 67, 61, 68, 64, 62, 55)(58, 63, 75, 72, 76, 69, 70, 65)(66, 71, 83, 80, 84, 77, 78, 73)(74, 81, 91, 85, 92, 88, 86, 79)(82, 89, 99, 93, 100, 96, 94, 87)(90, 95, 106, 104, 107, 101, 102, 97)(98, 103, 111, 110, 112, 108, 109, 105)(113, 126, 117, 130, 116, 124, 115, 120)(114, 119, 123, 125, 122, 118, 121, 137)(127, 168, 145, 179, 144, 169, 141, 151)(128, 170, 146, 180, 142, 175, 149, 155)(129, 174, 147, 210, 148, 172, 143, 158)(131, 187, 205, 186, 195, 178, 207, 188)(132, 215, 222, 213, 217, 209, 223, 214)(133, 189, 203, 185, 193, 177, 204, 190)(134, 156, 163, 173, 159, 150, 165, 183)(135, 157, 167, 176, 166, 153, 160, 212)(136, 154, 162, 171, 164, 152, 161, 184)(138, 211, 218, 220, 224, 221, 216, 219)(139, 181, 194, 198, 206, 199, 191, 197)(140, 182, 196, 200, 208, 201, 192, 202)
d: (8, 15)(11, 18)(16, 24)(20, 27)(32, 40)(41, 48)(47, 53)(55, 61)(65, 72)(73, 80)(79, 85)(87, 93)(97, 104)(105, 110)(113, 122)(114, 116)(120, 137)(125, 130)(127, 159)(128, 164)(129, 166)(131, 208)(132, 224)(133, 206)(134, 144)(135, 148)(136, 142)(138, 217)(139, 193)(140, 195)(151, 183)(155, 184)(158, 212)(171, 180)(173, 179)(176, 210)(177, 199)(178, 201)(181, 189)(182, 187)(209, 221)(211, 215)
e: (3, 6)(4, 9)(7, 14)(10, 17)(13, 23)(19, 26)(21, 31)(29, 35)(30, 37)(38, 43)(39, 45)(46, 51)(49, 56)(54, 59)(57, 64)(62, 67)(63, 69)(70, 75)(71, 77)(78, 83)(81, 88)(86, 91)(89, 96)(94, 99)(95, 101)(102, 106)(103, 108)(109, 111)(115, 117)(118, 124)(119, 126)(120, 125)(121, 123)(130, 137)(131, 140)(132, 138)(133, 139)(141, 145)(143, 147)(146, 149)(150, 169)(151, 173)(152, 175)(153, 172)(154, 170)(155, 171)(156, 168)(157, 174)(158, 176)(160, 167)(161, 162)(163, 165)(179, 183)(180, 184)(185, 190)(186, 188)(191, 203)(192, 205)(193, 206)(194, 204)(195, 208)(196, 207)(197, 198)(200, 202)(210, 212)(213, 214)(216, 222)(217, 224)(218, 223)(219, 220)
f: (1, 2)(3, 4)(5, 12)(6, 9)(7, 10)(8, 16)(11, 20)(13, 21)(14, 17)(15, 24)(18, 27)(19, 29)(22, 33)(23, 31)(25, 34)(26, 35)(28, 36)(30, 39)(32, 41)(37, 45)(38, 46)(40, 48)(42, 50)(43, 51)(44, 52)(47, 55)(49, 57)(53, 61)(54, 62)(56, 64)(58, 66)(59, 67)(60, 68)(63, 71)(65, 73)(69, 77)(70, 78)(72, 80)(74, 82)(75, 83)(76, 84)(79, 87)(81, 89)(85, 93)(86, 94)(88, 96)(90, 98)(91, 99)(92, 100)(95, 103)(97, 105)(101, 108)(102, 109)(104, 110)(106, 111)(107, 112)(127, 178)(128, 177)(129, 209)(131, 179)(132, 210)(133, 180)(134, 182)(135, 211)(136, 181)(138, 212)(139, 184)(140, 183)(141, 186)(142, 189)(143, 213)(144, 187)(145, 188)(146, 190)(147, 214)(148, 215)(149, 185)(150, 192)(151, 195)(152, 191)(153, 216)(154, 194)(155, 193)(156, 196)(157, 218)(158, 217)(159, 201)(160, 219)(161, 197)(162, 198)(163, 200)(164, 199)(165, 202)(166, 221)(167, 220)(168, 207)(169, 205)(170, 204)(171, 206)(172, 222)(173, 208)(174, 223)(175, 203)(176, 224)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 224, 19 ]
224
-1 124 159 127 118
-2 178 124 201 118
-3 121 168 115 150
-4 121 115 192 207
-5 191 159 203 127
-6 123 156 169 117
-7 125 130 141 163
-8 122 116 151 173
-9 123 117 205 196
-10 200 125 130 186
-11 199 189 151 173
-12 178 201 152 175
-13 168 150 185 197
-14 165 145 137 120
-15 113 179 114 183
-16 122 116 195 208
-17 188 202 137 120
-18 177 179 181 183
-19 133 206 141 163
-20 195 142 164 208
-21 192 149 161 207
-22 166 191 203 129
-23 198 156 190 169
-24 113 114 140 131
-25 144 134 126 119
-26 165 145 193 139
-27 136 128 140 131
-28 144 134 204 194
-29 200 180 171 186
-30 174 185 153 197
-31 146 205 162 196
-32 176 199 189 158
-33 209 221 152 175
-34 187 126 182 119
-35 155 188 202 184
-36 154 187 170 182
-37 198 157 190 172
-38 143 133 167 206
-39 223 149 161 216
-40 177 210 212 181
-41 224 217 142 164
-42 166 222 216 129
-43 147 160 193 139
-44 135 148 204 194
-45 222 146 162 218
-46 220 180 213 171
-47 176 221 158 215
-48 132 136 138 128
-49 213 174 153 219
-50 209 221 172 153
-51 155 214 184 219
-52 154 211 170 215
-53 209 210 211 212
-54 132 143 167 224
-55 166 224 148 217
-56 220 157 214 172
-57 143 223 160 216
-58 222 128 216 164
-59 147 138 160 217
-60 135 223 148 218
-61 132 135 138 129
-62 176 220 210 213
-63 213 170 152 219
-64 167 222 147 218
-65 155 221 171 215
-66 177 199 172 153
-67 212 158 214 219
-68 211 157 215 174
-69 154 220 214 175
-70 132 224 149 162
-71 143 191 160 204
-72 209 211 180 184
-73 166 148 193 206
-74 192 128 205 164
-75 146 138 161 217
-76 223 136 218 142
-77 167 147 203 194
-78 176 198 210 185
-79 187 155 201 171
-80 133 135 139 129
-81 202 170 152 186
-82 177 199 169 150
-83 190 212 158 197
-84 189 157 181 174
-85 178 180 182 184
-86 149 162 131 208
-87 144 159 193 206
-88 154 188 200 175
-89 165 191 204 141
-90 122 113 192 205
-91 146 161 140 195
-92 136 196 207 142
-93 133 134 127 139
-94 198 179 173 185
-95 202 126 118 186
-96 145 203 194 163
-97 187 201 125 120
-98 122 113 169 150
-99 190 183 151 197
-100 156 189 168 181
-101 188 200 124 119
-102 123 115 131 208
-103 165 126 118 141
-104 178 137 182 130
-105 144 125 159 120
-106 121 117 140 195
-107 114 116 196 207
-108 145 124 119 163
-109 123 179 115 173
-110 134 137 127 130
-111 121 117 183 151
-112 156 168 114 116
-113 24 90 15 98
-114 24 112 15 107
-115 3 102 4 109
-116 112 16 8 107
-117 111 6 106 9
-118 1 2 103 95
-119 34 101 25 108
-120 14 17 105 97
-121 111 3 4 106
-122 90 16 8 98
-123 102 6 9 109
-124 1 2 101 108
-125 105 7 97 10
-126 34 25 103 95
-127 110 1 5 93
-128 58 48 27 74
-129 22 80 61 42
-130 110 104 7 10
-131 24 102 27 86
-132 48 70 61 54
-133 80 38 93 19
-134 110 25 93 28
-135 44 80 60 61
-136 48 92 27 76
-137 110 14 104 17
-138 48 59 61 75
-139 80 26 93 43
-140 24 91 27 106
-141 89 103 7 19
-142 92 41 20 76
-143 57 38 71 54
-144 25 28 105 87
-145 14 26 96 108
-146 45 91 31 75
-147 77 59 64 43
-148 44 55 60 73
-149 70 39 86 21
-150 13 3 82 98
-151 11 99 111 8
-152 33 12 81 63
-153 66 49 50 30
-154 88 36 69 52
-155 35 79 51 65
-156 23 100 112 6
-157 56 68 37 84
-158 67 47 83 32
-159 1 5 105 87
-160 57 59 71 43
-161 91 39 75 21
-162 45 70 31 86
-163 7 19 96 108
-164 58 41 74 20
-165 89 14 26 103
-166 22 55 73 42
-167 77 38 64 54
-168 100 13 112 3
-169 23 82 6 98
-170 36 81 52 63
-171 46 79 29 65
-172 66 56 37 50
-173 11 94 8 109
-174 68 49 84 30
-175 33 88 12 69
-176 78 47 62 32
-177 66 82 18 40
-178 12 2 104 85
-179 15 94 18 109
-180 46 72 29 85
-181 100 18 40 84
-182 34 36 104 85
-183 99 111 15 18
-184 35 72 51 85
-185 78 13 94 30
-186 81 29 95 10
-187 34 79 36 97
-188 88 35 101 17
-189 11 100 84 32
-190 99 23 37 83
-191 22 89 5 71
-192 90 4 74 21
-193 26 73 43 87
-194 44 77 28 96
-195 91 16 106 20
-196 92 107 9 31
-197 99 13 83 30
-198 23 78 37 94
-199 11 66 82 32
-200 88 101 29 10
-201 12 2 79 97
-202 35 81 17 95
-203 22 77 5 96
-204 44 89 71 28
-205 90 74 9 31
-206 38 73 19 87
-207 4 92 107 21
-208 102 16 20 86
-209 33 50 72 53
-210 78 40 62 53
-211 68 72 52 53
-212 67 83 40 53
-213 46 49 62 63
-214 56 67 69 51
-215 68 47 52 65
-216 57 58 39 42
-217 55 59 41 75
-218 45 60 64 76
-219 67 49 51 63
-220 56 46 69 62
-221 33 47 50 65
-222 45 58 42 64
-223 57 60 39 76
-224 55 70 41 54
0

**************