[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 224, 22 ] =
KE_56(1,27,2,31,1).
(I) Following is a form readable by MAGMA:
g:=Graph<224|{ {2, 3}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214,
215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203},
{200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188,
189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177},
{174, 175}, {172, 173}, {170, 171}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46,
47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17},
{18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33},
{34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {112, 114}, {1, 2}, {221,
222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198},
{193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169,
170}, {53, 54}, {49, 50}, {45, 46}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21,
22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {3, 4}, {219, 220}, {211,
212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {51, 52}, {11,
12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {7, 8}, {215, 216}, {199, 200},
{183, 184}, {55, 56}, {23, 24}, {39, 40}, {32, 61}, {34, 63}, {111, 113}, {15,
16}, {207, 208}, {175, 176}, {47, 48}, {33, 62}, {31, 60}, {28, 57}, {30, 59},
{29, 58}, {64, 120}, {71, 127}, {70, 126}, {69, 125}, {68, 124}, {67, 123}, {66,
122}, {65, 121}, {128, 184}, {129, 185}, {130, 186}, {131, 187}, {132, 188},
{133, 189}, {134, 190}, {135, 191}, {1, 56}, {64, 122}, {69, 127}, {68, 126},
{65, 123}, {66, 124}, {67, 125}, {31, 32}, {223, 224}, {62, 120}, {63, 121},
{57, 113}, {168, 224}, {159, 215}, {158, 214}, {63, 119}, {62, 118}, {61, 117},
{60, 116}, {59, 115}, {58, 114}, {136, 192}, {137, 193}, {138, 194}, {139, 195},
{140, 196}, {141, 197}, {142, 198}, {143, 199}, {152, 208}, {153, 209}, {154,
210}, {155, 211}, {156, 212}, {157, 213}, {169, 224}, {57, 115}, {61, 119}, {60,
118}, {58, 116}, {59, 117}, {2, 87}, {8, 93}, {10, 95}, {1, 86}, {9, 94}, {144,
200}, {145, 201}, {146, 202}, {147, 203}, {148, 204}, {149, 205}, {150, 206},
{151, 207}, {3, 88}, {7, 92}, {4, 89}, {6, 91}, {5, 90}, {35, 64}, {55, 84},
{51, 80}, {47, 76}, {43, 72}, {39, 68}, {36, 65}, {54, 83}, {52, 81}, {46, 75},
{44, 73}, {38, 67}, {37, 66}, {53, 82}, {45, 74}, {11, 96}, {15, 100}, {27,
112}, {12, 97}, {56, 85}, {14, 99}, {40, 69}, {42, 71}, {13, 98}, {41, 70}, {1,
113}, {2, 114}, {3, 115}, {4, 116}, {5, 117}, {6, 118}, {7, 119}, {8, 120}, {9,
121}, {10, 122}, {11, 123}, {12, 124}, {13, 125}, {14, 126}, {15, 127}, {16,
101}, {18, 103}, {24, 109}, {26, 111}, {17, 102}, {25, 110}, {160, 216}, {167,
223}, {166, 222}, {165, 221}, {164, 220}, {163, 219}, {162, 218}, {161, 217},
{19, 104}, {23, 108}, {20, 105}, {50, 79}, {48, 77}, {22, 107}, {21, 106}, {191,
192}, {49, 78}, {64, 207}, {80, 223}, {16, 128}, {56, 168}, {55, 167}, {54,
166}, {53, 165}, {52, 164}, {51, 163}, {50, 162}, {49, 161}, {48, 160}, {17,
129}, {18, 130}, {19, 131}, {20, 132}, {21, 133}, {22, 134}, {23, 135}, {24,
136}, {25, 137}, {26, 138}, {27, 139}, {28, 140}, {29, 141}, {30, 142}, {31,
143}, {65, 208}, {73, 216}, {71, 214}, {69, 212}, {67, 210}, {75, 218}, {77,
220}, {79, 222}, {66, 209}, {74, 217}, {70, 213}, {78, 221}, {68, 211}, {76,
219}, {72, 215}, {105, 192}, {107, 194}, {109, 196}, {111, 198}, {106, 193},
{110, 197}, {108, 195}, {32, 144}, {47, 159}, {46, 158}, {45, 157}, {44, 156},
{43, 155}, {33, 145}, {34, 146}, {35, 147}, {36, 148}, {37, 149}, {38, 150},
{39, 151}, {40, 152}, {41, 153}, {42, 154}, {81, 224}, {112, 199}, {70, 128},
{71, 129}, {78, 136}, {79, 137}, {86, 144}, {87, 145}, {94, 152}, {95, 153},
{102, 160}, {103, 161}, {110, 168}, {72, 128}, {75, 131}, {74, 130}, {73, 129},
{76, 132}, {77, 133}, {78, 134}, {79, 135}, {88, 144}, {89, 145}, {90, 146},
{91, 147}, {92, 148}, {93, 149}, {94, 150}, {95, 151}, {104, 160}, {105, 161},
{106, 162}, {107, 163}, {108, 164}, {109, 165}, {110, 166}, {111, 167}, {120,
176}, {121, 177}, {122, 178}, {123, 179}, {124, 180}, {125, 181}, {126, 182},
{127, 183}, {72, 130}, {73, 131}, {76, 134}, {77, 135}, {88, 146}, {89, 147},
{92, 150}, {93, 151}, {104, 162}, {105, 163}, {108, 166}, {109, 167}, {74, 132},
{75, 133}, {90, 148}, {91, 149}, {106, 164}, {107, 165}, {96, 183}, {104, 191},
{80, 136}, {81, 137}, {82, 138}, {83, 139}, {84, 140}, {85, 141}, {86, 142},
{87, 143}, {112, 168}, {113, 169}, {114, 170}, {115, 171}, {116, 172}, {117,
173}, {118, 174}, {119, 175}, {97, 184}, {99, 186}, {101, 188}, {103, 190}, {80,
138}, {81, 139}, {84, 142}, {85, 143}, {98, 185}, {102, 189}, {82, 140}, {83,
141}, {100, 187}, {89, 176}, {91, 178}, {93, 180}, {95, 182}, {90, 177}, {94,
181}, {92, 179}, {57, 200}, {63, 206}, {61, 204}, {59, 202}, {58, 201}, {62,
205}, {60, 203}, {88, 175}, {96, 152}, {97, 153}, {98, 154}, {99, 155}, {100,
156}, {101, 157}, {102, 158}, {103, 159}, {83, 170}, {85, 172}, {87, 174}, {96,
154}, {97, 155}, {100, 158}, {101, 159}, {82, 169}, {86, 173}, {98, 156}, {99,
157}, {84, 171} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (2, 86)(3, 173)(4, 117)(6, 90)(7, 177)(8, 121)(10, 94)(11, 181)(12, 125)(14,
98)(15, 185)(16, 129)(18, 102)(19, 189)(20, 133)(22, 106)(23, 193)(24, 137)(26,
110)(27, 197)(28, 141)(30, 58)(31, 201)(32, 145)(34, 62)(35, 205)(36, 149)(38,
66)(39, 209)(40, 153)(42, 70)(43, 213)(44, 157)(46, 74)(47, 217)(48, 161)(50,
78)(51, 221)(52, 165)(54, 82)(55, 169)(56, 113)(57, 85)(59, 116)(60, 202)(61,
89)(63, 120)(64, 206)(65, 93)(67, 124)(68, 210)(69, 97)(71, 128)(72, 214)(73,
101)(75, 132)(76, 218)(77, 105)(79, 136)(80, 222)(81, 109)(83, 140)(84, 170)(87,
144)(88, 174)(91, 148)(92, 178)(95, 152)(96, 182)(99, 156)(100, 186)(103,
160)(104, 190)(107, 164)(108, 194)(111, 168)(112, 198)(114, 142)(115, 172)(118,
146)(119, 176)(122, 150)(123, 180)(126, 154)(127, 184)(130, 158)(131, 188)(134,
162)(135, 192)(138, 166)(139, 196)(143, 200)(147, 204)(151, 208)(155, 212)(159,
216)(163, 220)(167, 224) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 56)(3, 55)(4, 54)(5, 53)(6, 52)(7, 51)(8, 50)(9, 49)(10, 48)(11, 47)(12,
46)(13, 45)(14, 44)(15, 43)(16, 42)(17, 41)(18, 40)(19, 39)(20, 38)(21, 37)(22,
36)(23, 35)(24, 34)(25, 33)(26, 32)(27, 31)(28, 30)(57, 142)(58, 141)(59,
140)(60, 139)(61, 138)(62, 137)(63, 136)(64, 135)(65, 134)(66, 133)(67, 132)(68,
131)(69, 130)(70, 129)(71, 128)(72, 127)(73, 126)(74, 125)(75, 124)(76, 123)(77,
122)(78, 121)(79, 120)(80, 119)(81, 118)(82, 117)(83, 116)(84, 115)(85, 114)(86,
113)(87, 168)(88, 167)(89, 166)(90, 165)(91, 164)(92, 163)(93, 162)(94, 161)(95,
160)(96, 159)(97, 158)(98, 157)(99, 156)(100, 155)(101, 154)(102, 153)(103,
152)(104, 151)(105, 150)(106, 149)(107, 148)(108, 147)(109, 146)(110, 145)(111,
144)(112, 143)(169, 173)(170, 172)(174, 224)(175, 223)(176, 222)(177, 221)(178,
220)(179, 219)(180, 218)(181, 217)(182, 216)(183, 215)(184, 214)(185, 213)(186,
212)(187, 211)(188, 210)(189, 209)(190, 208)(191, 207)(192, 206)(193, 205)(194,
204)(195, 203)(196, 202)(197, 201)(198, 200)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56)(57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112)(113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168)(169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224)
C4[ 224, 22 ]
224
-1 56 2 113 86
-2 1 3 114 87
-3 88 2 4 115
-4 89 3 5 116
-5 90 4 6 117
-6 91 5 7 118
-7 92 6 8 119
-8 93 7 9 120
-9 121 94 8 10
-10 11 122 95 9
-11 12 123 96 10
-12 11 13 124 97
-13 12 14 125 98
-14 99 13 15 126
-15 100 14 16 127
-16 101 15 17 128
-17 102 16 18 129
-18 103 17 19 130
-19 104 18 20 131
-20 132 105 19 21
-21 22 133 106 20
-22 23 134 107 21
-23 22 24 135 108
-24 23 25 136 109
-25 110 24 26 137
-26 111 25 27 138
-27 112 26 28 139
-28 57 27 29 140
-29 58 28 30 141
-30 59 29 31 142
-31 143 60 30 32
-32 33 144 61 31
-33 34 145 62 32
-34 33 35 146 63
-35 34 36 147 64
-36 35 37 148 65
-37 66 36 38 149
-38 67 37 39 150
-39 68 38 40 151
-40 69 39 41 152
-41 70 40 42 153
-42 154 71 41 43
-43 44 155 72 42
-44 45 156 73 43
-45 44 46 157 74
-46 45 47 158 75
-47 46 48 159 76
-48 77 47 49 160
-49 78 48 50 161
-50 79 49 51 162
-51 80 50 52 163
-52 81 51 53 164
-53 165 82 52 54
-54 55 166 83 53
-55 56 167 84 54
-56 55 1 168 85
-57 200 113 115 28
-58 201 114 116 29
-59 202 115 117 30
-60 203 116 118 31
-61 204 117 119 32
-62 33 205 118 120
-63 121 34 206 119
-64 122 35 207 120
-65 121 123 36 208
-66 209 122 124 37
-67 210 123 125 38
-68 211 124 126 39
-69 212 125 127 40
-70 213 126 128 41
-71 214 127 129 42
-72 215 128 130 43
-73 44 216 129 131
-74 132 45 217 130
-75 133 46 218 131
-76 132 134 47 219
-77 220 133 135 48
-78 221 134 136 49
-79 222 135 137 50
-80 223 136 138 51
-81 224 137 139 52
-82 169 138 140 53
-83 170 139 141 54
-84 55 171 140 142
-85 143 56 172 141
-86 1 144 173 142
-87 143 2 145 174
-88 144 3 146 175
-89 176 145 4 147
-90 177 146 5 148
-91 178 147 6 149
-92 179 148 7 150
-93 180 149 8 151
-94 181 150 9 152
-95 182 151 10 153
-96 11 154 183 152
-97 12 155 184 153
-98 154 13 156 185
-99 155 14 157 186
-100 187 156 15 158
-101 188 157 16 159
-102 189 158 17 160
-103 190 159 18 161
-104 191 160 19 162
-105 192 161 20 163
-106 193 162 21 164
-107 22 165 194 163
-108 23 166 195 164
-109 165 24 167 196
-110 166 25 168 197
-111 198 167 113 26
-112 199 168 114 27
-113 1 111 57 169
-114 2 112 58 170
-115 57 3 59 171
-116 58 4 60 172
-117 59 5 61 173
-118 60 6 62 174
-119 61 7 63 175
-120 176 62 8 64
-121 177 63 9 65
-122 66 178 64 10
-123 11 67 179 65
-124 66 12 68 180
-125 67 13 69 181
-126 68 14 70 182
-127 69 15 71 183
-128 70 16 72 184
-129 71 17 73 185
-130 72 18 74 186
-131 187 73 19 75
-132 188 74 20 76
-133 77 189 75 21
-134 22 78 190 76
-135 77 23 79 191
-136 78 24 80 192
-137 79 25 81 193
-138 80 26 82 194
-139 81 27 83 195
-140 82 28 84 196
-141 83 29 85 197
-142 198 84 30 86
-143 199 85 31 87
-144 88 200 86 32
-145 33 89 201 87
-146 88 34 90 202
-147 89 35 91 203
-148 90 36 92 204
-149 91 37 93 205
-150 92 38 94 206
-151 93 39 95 207
-152 94 40 96 208
-153 209 95 41 97
-154 210 96 42 98
-155 99 211 97 43
-156 44 100 212 98
-157 99 45 101 213
-158 100 46 102 214
-159 101 47 103 215
-160 102 48 104 216
-161 103 49 105 217
-162 104 50 106 218
-163 105 51 107 219
-164 220 106 52 108
-165 221 107 53 109
-166 110 222 108 54
-167 55 111 223 109
-168 110 56 112 224
-169 113 224 82 170
-170 114 169 83 171
-171 115 170 84 172
-172 116 171 85 173
-173 117 172 86 174
-174 118 173 87 175
-175 88 176 119 174
-176 89 177 120 175
-177 121 176 90 178
-178 122 177 91 179
-179 123 178 92 180
-180 124 179 93 181
-181 125 180 94 182
-182 126 181 95 183
-183 127 182 96 184
-184 128 183 97 185
-185 129 184 98 186
-186 99 187 130 185
-187 100 188 131 186
-188 132 187 101 189
-189 133 188 102 190
-190 134 189 103 191
-191 135 190 104 192
-192 136 191 105 193
-193 137 192 106 194
-194 138 193 107 195
-195 139 194 108 196
-196 140 195 109 197
-197 110 198 141 196
-198 111 199 142 197
-199 143 198 112 200
-200 144 199 57 201
-201 145 200 58 202
-202 146 201 59 203
-203 147 202 60 204
-204 148 203 61 205
-205 149 204 62 206
-206 150 205 63 207
-207 151 206 64 208
-208 209 152 207 65
-209 66 210 153 208
-210 154 209 67 211
-211 155 210 68 212
-212 156 211 69 213
-213 157 212 70 214
-214 158 213 71 215
-215 159 214 72 216
-216 160 215 73 217
-217 161 216 74 218
-218 162 217 75 219
-219 220 163 218 76
-220 77 221 164 219
-221 165 220 78 222
-222 166 221 79 223
-223 167 222 80 224
-224 168 223 81 169
0