[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 224, 29 ] =
SDD(W(28,2)).
(I) Following is a form readable by MAGMA:
g:=Graph<224|{ {76, 124}, {64, 118}, {49, 113}, {49, 117}, {54, 114}, {55, 127},
{49, 120}, {54, 125}, {48, 124}, {38, 119}, {38, 116}, {47, 123}, {40, 126},
{32, 120}, {46, 119}, {40, 115}, {36, 122}, {38, 121}, {20, 116}, {21, 118},
{21, 113}, {25, 125}, {26, 127}, {21, 115}, {21, 114}, {25, 126}, {19, 121},
{16, 123}, {20, 127}, {25, 117}, {17, 124}, {1, 113}, {1, 115}, {8, 122}, {6,
116}, {1, 114}, {8, 123}, {2, 113}, {3, 119}, {15, 123}, {10, 126}, {9, 124},
{15, 122}, {13, 120}, {4, 114}, {5, 115}, {1, 118}, {14, 121}, {10, 125}, {3,
116}, {2, 117}, {4, 125}, {6, 127}, {2, 120}, {3, 121}, {5, 126}, {12, 119}, {7,
122}, {11, 118}, {10, 117}, {9, 137}, {70, 198}, {4, 133}, {45, 172}, {35, 162},
{20, 149}, {16, 145}, {6, 135}, {2, 128}, {43, 169}, {8, 138}, {3, 129}, {57,
187}, {66, 192}, {69, 199}, {5, 134}, {99, 224}, {24, 155}, {19, 144}, {17,
146}, {12, 143}, {10, 142}, {48, 180}, {42, 174}, {41, 173}, {7, 130}, {29,
152}, {15, 138}, {11, 142}, {75, 205}, {79, 200}, {13, 133}, {84, 220}, {27,
147}, {61, 181}, {74, 194}, {37, 172}, {88, 209}, {82, 219}, {60, 181}, {18,
152}, {50, 184}, {26, 144}, {51, 185}, {67, 201}, {75, 193}, {8, 131}, {89,
210}, {59, 176}, {15, 131}, {108, 224}, {81, 221}, {29, 145}, {19, 159}, {53,
185}, {9, 132}, {86, 219}, {82, 223}, {23, 154}, {65, 204}, {44, 162}, {52,
186}, {66, 204}, {7, 136}, {92, 211}, {91, 212}, {83, 220}, {81, 222}, {47,
160}, {22, 153}, {63, 176}, {73, 198}, {74, 197}, {75, 219}, {93, 205}, {5,
148}, {84, 197}, {48, 161}, {32, 177}, {14, 159}, {12, 157}, {7, 150}, {52,
166}, {6, 149}, {95, 204}, {20, 135}, {13, 158}, {52, 167}, {56, 171}, {56,
172}, {93, 201}, {24, 141}, {94, 203}, {26, 143}, {51, 166}, {58, 175}, {71,
210}, {74, 220}, {84, 194}, {4, 147}, {93, 202}, {86, 193}, {50, 165}, {43,
188}, {25, 142}, {11, 156}, {68, 211}, {73, 222}, {18, 138}, {92, 196}, {91,
195}, {83, 203}, {66, 218}, {70, 222}, {72, 209}, {81, 200}, {67, 217}, {23,
140}, {86, 205}, {31, 132}, {27, 128}, {23, 139}, {47, 179}, {22, 139}, {30,
131}, {28, 129}, {53, 168}, {9, 151}, {80, 206}, {46, 176}, {33, 191}, {14,
144}, {55, 169}, {29, 130}, {80, 207}, {61, 162}, {77, 210}, {78, 209}, {22,
182}, {39, 135}, {28, 188}, {27, 187}, {19, 178}, {107, 202}, {46, 143}, {31,
190}, {48, 146}, {111, 205}, {101, 199}, {16, 179}, {30, 189}, {11, 175}, {104,
204}, {96, 196}, {45, 137}, {44, 136}, {17, 180}, {111, 202}, {41, 140}, {34,
135}, {32, 133}, {54, 147}, {61, 152}, {36, 130}, {111, 201}, {110, 200}, {18,
181}, {42, 141}, {38, 129}, {33, 134}, {55, 144}, {102, 206}, {109, 197}, {104,
192}, {62, 151}, {102, 207}, {43, 129}, {56, 146}, {57, 147}, {60, 150}, {63,
149}, {35, 136}, {36, 136}, {37, 137}, {40, 134}, {103, 201}, {100, 202}, {58,
148}, {59, 149}, {24, 183}, {105, 198}, {16, 160}, {110, 222}, {18, 162}, {17,
161}, {49, 128}, {105, 216}, {100, 213}, {97, 208}, {23, 165}, {104, 218}, {98,
208}, {36, 150}, {26, 169}, {110, 221}, {83, 224}, {46, 157}, {54, 133}, {30,
170}, {107, 223}, {99, 215}, {31, 171}, {22, 163}, {99, 214}, {28, 169}, {29,
170}, {112, 199}, {61, 138}, {55, 143}, {57, 128}, {97, 216}, {96, 217}, {39,
157}, {109, 215}, {108, 214}, {98, 216}, {100, 223}, {108, 215}, {12, 176}, {97,
221}, {40, 148}, {24, 164}, {14, 178}, {13, 177}, {33, 156}, {32, 158}, {112,
206}, {107, 213}, {103, 217}, {47, 145}, {34, 157}, {98, 221}, {90, 154}, {102,
167}, {111, 174}, {68, 134}, {82, 150}, {83, 151}, {76, 137}, {87, 145}, {110,
168}, {95, 153}, {76, 132}, {109, 165}, {112, 185}, {28, 208}, {94, 146}, {85,
153}, {31, 210}, {64, 142}, {106, 164}, {30, 209}, {105, 166}, {96, 175}, {87,
152}, {98, 178}, {105, 185}, {90, 139}, {92, 141}, {97, 178}, {100, 183}, {27,
207}, {87, 130}, {109, 184}, {99, 182}, {73, 159}, {90, 140}, {91, 140}, {102,
177}, {65, 153}, {112, 168}, {103, 191}, {66, 154}, {67, 155}, {68, 156}, {70,
159}, {108, 182}, {69, 158}, {88, 131}, {76, 151}, {64, 156}, {107, 183}, {89,
132}, {106, 183}, {62, 224}, {101, 187}, {85, 139}, {101, 186}, {59, 218}, {80,
177}, {34, 192}, {35, 193}, {62, 220}, {58, 217}, {85, 182}, {60, 223}, {50,
215}, {88, 189}, {63, 218}, {37, 194}, {106, 141}, {95, 184}, {89, 190}, {82,
181}, {39, 192}, {60, 219}, {71, 160}, {79, 167}, {72, 161}, {74, 163}, {79,
166}, {41, 195}, {51, 216}, {65, 173}, {44, 193}, {77, 160}, {42, 196}, {45,
194}, {64, 175}, {75, 164}, {78, 161}, {77, 189}, {78, 190}, {106, 155}, {33,
211}, {104, 154}, {95, 173}, {94, 172}, {92, 174}, {89, 171}, {88, 170}, {86,
164}, {53, 199}, {37, 214}, {93, 174}, {39, 212}, {56, 203}, {71, 180}, {96,
148}, {51, 198}, {94, 171}, {79, 186}, {62, 203}, {73, 188}, {34, 212}, {91,
173}, {85, 163}, {35, 213}, {57, 207}, {72, 190}, {50, 197}, {84, 163}, {80,
167}, {59, 195}, {42, 211}, {81, 168}, {44, 213}, {65, 184}, {77, 180}, {70,
188}, {71, 189}, {43, 208}, {101, 158}, {45, 214}, {53, 206}, {68, 191}, {72,
179}, {52, 200}, {103, 155}, {63, 195}, {67, 191}, {41, 212}, {87, 170}, {78,
179}, {58, 196}, {69, 187}, {69, 186}, {90, 165} }>;
(II) A more general form is to represent the graph as the orbit of {76, 124}
under the group generated by the following permutations:
a: (62, 83) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (42, 67)(92, 103)(141, 155)(174, 201)(191, 211)(196, 217)
c: (97, 98)
d: (14, 28)(19, 43)(121, 129)(144, 169)(159, 188)(178, 208)
e: (72, 78)
f: (12, 46)
g: (1, 2)(3, 7)(4, 10)(5, 13)(6, 8)(9, 22)(11, 27)(12, 29)(14, 35)(15, 20)(16,
34)(17, 23)(18, 26)(19, 44)(21, 49)(24, 51)(25, 54)(28, 60)(30, 59)(31, 65)(32,
40)(33, 69)(36, 38)(37, 74)(39, 47)(41, 71)(42, 52)(43, 82)(45, 84)(46, 87)(48,
90)(50, 56)(53, 67)(55, 61)(57, 64)(58, 80)(62, 99)(63, 88)(66, 72)(68, 101)(70,
75)(73, 86)(76, 85)(77, 91)(78, 104)(79, 92)(81, 93)(83, 108)(89, 95)(94,
109)(96, 102)(97, 100)(98, 107)(103, 112)(105, 106)(110, 111)(114, 117)(115,
120)(116, 122)(118, 128)(119, 130)(121, 136)(123, 135)(124, 139)(126, 133)(127,
138)(129, 150)(131, 149)(132, 153)(134, 158)(137, 163)(140, 180)(141, 166)(142,
147)(143, 152)(144, 162)(145, 157)(146, 165)(148, 177)(151, 182)(154, 161)(155,
185)(156, 187)(159, 193)(160, 212)(164, 198)(167, 196)(168, 201)(169, 181)(170,
176)(171, 184)(172, 197)(173, 210)(174, 200)(175, 207)(178, 213)(179, 192)(183,
216)(186, 211)(188, 219)(189, 195)(190, 204)(191, 199)(202, 221)(203, 215)(205,
222)(206, 217)(208, 223)(209, 218)(214, 220)
h: (28, 43)
m: (5, 11)(40, 64)(115, 118)(126, 142)(134, 156)(148, 175)
n1: (33, 58)(68, 96)(134, 148)(156, 175)(191, 217)(196, 211)
a1: (2, 4)(49, 54)(113, 114)(117, 125)(120, 133)(128, 147)
b1: (24, 93)(106, 111)(141, 174)(155, 201)(164, 205)(183, 202)
c1: (37, 62)(45, 83)(137, 151)(172, 203)(194, 220)(214, 224)
d1: (99, 108)
e1: (18, 61)
f1: (30, 88)
g1: (59, 63)
h1: (50, 109)
m1: (74, 99)(84, 108)(163, 182)(194, 214)(197, 215)(220, 224)
n2: (65, 95)
a2: (34, 59)(39, 63)(135, 149)(157, 176)(192, 218)(195, 212)
b2: (13, 27)(32, 57)(120, 128)(133, 147)(158, 187)(177, 207)
c2: (14, 19)
d2: (70, 97)(73, 98)(159, 178)(188, 208)(198, 216)(221, 222)
e2: (37, 45)
f2: (58, 96)
g2: (71, 72)(77, 78)(160, 179)(161, 180)(189, 209)(190, 210)
h2: (8, 15)
m2: (17, 31)(48, 89)(124, 132)(146, 171)(161, 190)(180, 210)
n3: (81, 110)
a3: (9, 56)(76, 94)(124, 146)(132, 171)(137, 172)(151, 203)
b3: (75, 100)(86, 107)(164, 183)(193, 213)(202, 205)(219, 223)
c3: (41, 66)(91, 104)(140, 154)(173, 204)(192, 212)(195, 218)
d3: (66, 104)
e3: (51, 81)(105, 110)(166, 200)(168, 185)(198, 222)(216, 221)
f3: (34, 39)
g3: (26, 55)
h3: (69, 80)(101, 102)(158, 177)(167, 186)(187, 207)(199, 206)
m3: (35, 60)(44, 82)(136, 150)(162, 181)(193, 219)(213, 223)
n4: (53, 112)
a4: (56, 94)
b4: (4, 54)
c4: (75, 86)
d4: (60, 82)
e4: (6, 12)(20, 46)(116, 119)(127, 143)(135, 157)(149, 176)
f4: (52, 53)(79, 112)(166, 185)(167, 206)(168, 200)(186, 199)
g4: (31, 89)
h4: (80, 102)
m4: (35, 44)
n5: (8, 29)(15, 87)(122, 130)(123, 145)(131, 170)(138, 152)
a5: (100, 107)
b5: (29, 87)
c5: (16, 30)(47, 88)(123, 131)(145, 170)(160, 189)(179, 209)
d5: (7, 18)(36, 61)(122, 138)(130, 152)(136, 162)(150, 181)
e5: (70, 73)
f5: (27, 57)
g5: (3, 26)(38, 55)(116, 127)(119, 143)(121, 144)(129, 169)
h5: (10, 25)
m5: (11, 64)
n6: (23, 65)(90, 95)(139, 153)(140, 173)(154, 204)(165, 184)
a6: (2, 5)(3, 8)(4, 11)(6, 16)(7, 14)(9, 23)(12, 30)(13, 33)(15, 38)(17, 41)(18,
28)(19, 36)(20, 47)(22, 37)(24, 52)(26, 29)(27, 58)(31, 66)(32, 68)(34, 71)(35,
70)(39, 77)(40, 49)(42, 69)(43, 61)(44, 73)(45, 85)(46, 88)(48, 91)(50, 62)(51,
75)(53, 93)(54, 64)(55, 87)(56, 65)(57, 96)(59, 72)(60, 97)(63, 78)(67, 80)(76,
90)(79, 106)(81, 100)(82, 98)(83, 109)(86, 105)(89, 104)(92, 101)(94, 95)(102,
103)(107, 110)(111, 112)(113, 115)(114, 118)(116, 123)(117, 126)(119, 131)(120,
134)(121, 122)(124, 140)(125, 142)(127, 145)(128, 148)(129, 138)(130, 144)(132,
154)(133, 156)(135, 160)(136, 159)(137, 139)(141, 186)(143, 170)(146, 173)(147,
175)(149, 179)(150, 178)(151, 165)(152, 169)(153, 172)(155, 167)(157, 189)(158,
211)(161, 195)(162, 188)(163, 194)(164, 166)(168, 202)(171, 204)(174, 199)(176,
209)(177, 191)(180, 212)(181, 208)(182, 214)(183, 200)(184, 203)(185, 205)(187,
196)(190, 218)(192, 210)(193, 198)(197, 220)(201, 206)(207, 217)(213, 222)(215,
224)(216, 219)(221, 223)
b6: (93, 111)
c6: (67, 103)
d6: (74, 84)
e6: (22, 50)(85, 109)(139, 165)(153, 184)(163, 197)(182, 215)
C4[ 224, 29 ]
224
-1 113 114 115 118
-2 113 117 128 120
-3 121 116 129 119
-4 133 114 125 147
-5 134 115 126 148
-6 135 116 127 149
-7 122 136 150 130
-8 122 123 138 131
-9 132 124 137 151
-10 125 126 117 142
-11 156 118 142 175
-12 143 176 157 119
-13 133 177 158 120
-14 121 144 178 159
-15 122 123 138 131
-16 123 145 179 160
-17 124 146 180 161
-18 181 138 162 152
-19 121 144 178 159
-20 135 116 127 149
-21 113 114 115 118
-22 182 139 163 153
-23 154 165 139 140
-24 155 183 141 164
-25 125 126 117 142
-26 143 144 169 127
-27 187 147 128 207
-28 188 169 129 208
-29 145 170 130 152
-30 209 189 170 131
-31 132 210 190 171
-32 133 177 158 120
-33 134 156 211 191
-34 135 157 212 192
-35 136 213 193 162
-36 122 136 150 130
-37 137 214 172 194
-38 121 116 129 119
-39 135 157 212 192
-40 134 115 126 148
-41 212 140 173 195
-42 211 141 174 196
-43 188 169 129 208
-44 136 213 193 162
-45 137 214 172 194
-46 143 176 157 119
-47 123 145 179 160
-48 124 146 180 161
-49 113 117 128 120
-50 165 215 184 197
-51 198 166 216 185
-52 166 167 200 186
-53 199 168 206 185
-54 133 114 125 147
-55 143 144 169 127
-56 146 203 171 172
-57 187 147 128 207
-58 148 217 196 175
-59 176 149 195 218
-60 223 181 150 219
-61 181 138 162 152
-62 220 224 203 151
-63 176 149 195 218
-64 156 118 142 175
-65 204 173 184 153
-66 154 192 204 218
-67 155 201 191 217
-68 134 156 211 191
-69 187 199 158 186
-70 198 188 222 159
-71 210 189 180 160
-72 209 179 190 161
-73 198 188 222 159
-74 220 194 163 197
-75 193 205 164 219
-76 132 124 137 151
-77 210 189 180 160
-78 209 179 190 161
-79 166 167 200 186
-80 177 167 206 207
-81 221 200 222 168
-82 223 181 150 219
-83 220 224 203 151
-84 220 194 163 197
-85 182 139 163 153
-86 193 205 164 219
-87 145 170 130 152
-88 209 189 170 131
-89 132 210 190 171
-90 154 165 139 140
-91 212 140 173 195
-92 211 141 174 196
-93 201 202 205 174
-94 146 203 171 172
-95 204 173 184 153
-96 148 217 196 175
-97 221 178 216 208
-98 221 178 216 208
-99 224 214 182 215
-100 223 202 213 183
-101 187 199 158 186
-102 177 167 206 207
-103 155 201 191 217
-104 154 192 204 218
-105 198 166 216 185
-106 155 183 141 164
-107 223 202 213 183
-108 224 214 182 215
-109 165 215 184 197
-110 221 200 222 168
-111 201 202 205 174
-112 199 168 206 185
-113 1 2 49 21
-114 1 4 21 54
-115 1 5 40 21
-116 3 38 6 20
-117 2 25 49 10
-118 11 1 64 21
-119 12 46 3 38
-120 2 13 49 32
-121 3 14 38 19
-122 36 15 7 8
-123 47 15 16 8
-124 48 17 9 76
-125 25 4 10 54
-126 25 5 40 10
-127 55 26 6 20
-128 2 57 27 49
-129 3 38 28 43
-130 36 7 29 87
-131 88 15 8 30
-132 89 9 31 76
-133 13 4 32 54
-134 33 68 5 40
-135 34 6 39 20
-136 44 35 36 7
-137 45 37 9 76
-138 15 61 18 8
-139 22 23 90 85
-140 23 90 91 41
-141 24 92 106 42
-142 11 25 64 10
-143 55 12 46 26
-144 55 14 26 19
-145 47 16 29 87
-146 56 48 17 94
-147 57 4 27 54
-148 58 5 40 96
-149 59 6 63 20
-150 36 60 82 7
-151 83 62 9 76
-152 61 18 29 87
-153 22 95 85 65
-154 66 23 90 104
-155 67 24 103 106
-156 11 33 68 64
-157 12 34 46 39
-158 13 101 69 32
-159 14 70 73 19
-160 77 47 16 71
-161 78 48 17 72
-162 44 35 61 18
-163 22 84 74 85
-164 24 106 75 86
-165 23 90 50 109
-166 79 105 51 52
-167 79 80 102 52
-168 110 112 81 53
-169 55 26 28 43
-170 88 29 30 87
-171 56 89 94 31
-172 45 56 37 94
-173 91 95 41 65
-174 111 92 93 42
-175 11 58 96 64
-176 12 46 59 63
-177 13 80 102 32
-178 14 19 97 98
-179 78 47 16 72
-180 77 48 71 17
-181 60 82 61 18
-182 22 99 85 108
-183 100 24 106 107
-184 50 95 65 109
-185 112 105 51 53
-186 79 101 69 52
-187 57 101 69 27
-188 70 28 73 43
-189 77 88 71 30
-190 78 89 72 31
-191 33 67 68 103
-192 66 34 104 39
-193 44 35 75 86
-194 45 37 84 74
-195 91 59 41 63
-196 58 92 96 42
-197 50 84 74 109
-198 70 105 51 73
-199 101 112 69 53
-200 110 79 81 52
-201 67 111 103 93
-202 100 111 93 107
-203 56 83 94 62
-204 66 104 95 65
-205 111 93 75 86
-206 112 80 102 53
-207 57 80 102 27
-208 28 97 43 98
-209 88 78 72 30
-210 77 89 71 31
-211 33 68 92 42
-212 34 91 39 41
-213 44 100 35 107
-214 99 45 37 108
-215 99 50 108 109
-216 105 51 97 98
-217 67 58 103 96
-218 66 59 104 63
-219 60 82 75 86
-220 83 62 84 74
-221 110 81 97 98
-222 110 70 81 73
-223 100 60 82 107
-224 99 83 62 108
0