C4graphGraph forms for C4 [ 224, 30 ] = SDD(C_56(1,15))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 224, 30 ] = SDD(C_56(1,15)).

(I) Following is a form readable by MAGMA:

g:=Graph<224|{ {107, 123}, {110, 127}, {109, 126}, {105, 125}, {111, 122}, {97, 119}, {106, 124}, {109, 117}, {108, 118}, {110, 116}, {105, 114}, {108, 113}, {108, 114}, {98, 125}, {108, 115}, {86, 118}, {88, 121}, {91, 120}, {90, 127}, {95, 122}, {93, 123}, {91, 113}, {88, 116}, {91, 117}, {88, 119}, {63, 126}, {59, 124}, {50, 120}, {63, 115}, {33, 121}, {24, 125}, {25, 127}, {16, 123}, {17, 124}, {1, 113}, {1, 115}, {6, 116}, {1, 114}, {8, 123}, {2, 113}, {3, 119}, {10, 126}, {9, 124}, {15, 122}, {13, 120}, {4, 114}, {5, 115}, {1, 118}, {14, 121}, {3, 116}, {2, 117}, {4, 125}, {6, 127}, {2, 120}, {3, 121}, {5, 126}, {12, 119}, {7, 122}, {11, 118}, {10, 117}, {15, 143}, {4, 133}, {85, 212}, {80, 209}, {8, 137}, {6, 135}, {2, 128}, {84, 214}, {82, 208}, {3, 129}, {69, 199}, {5, 134}, {83, 208}, {74, 201}, {47, 172}, {34, 161}, {9, 138}, {58, 185}, {61, 190}, {62, 189}, {65, 194}, {8, 140}, {74, 206}, {41, 173}, {14, 138}, {7, 130}, {23, 146}, {21, 144}, {70, 195}, {27, 157}, {81, 215}, {47, 169}, {41, 175}, {40, 174}, {71, 193}, {22, 145}, {76, 203}, {64, 199}, {13, 133}, {104, 224}, {39, 175}, {25, 145}, {48, 184}, {49, 185}, {68, 204}, {17, 152}, {51, 186}, {39, 173}, {75, 193}, {8, 131}, {53, 190}, {18, 158}, {40, 164}, {32, 172}, {30, 146}, {24, 148}, {19, 159}, {9, 132}, {55, 186}, {25, 151}, {7, 136}, {89, 214}, {80, 223}, {76, 195}, {25, 150}, {44, 188}, {87, 199}, {82, 194}, {77, 221}, {73, 217}, {23, 134}, {79, 222}, {75, 218}, {34, 179}, {65, 208}, {37, 183}, {79, 221}, {62, 172}, {71, 213}, {75, 216}, {78, 221}, {77, 222}, {9, 157}, {89, 205}, {81, 197}, {38, 178}, {60, 168}, {46, 187}, {83, 198}, {78, 219}, {73, 220}, {50, 167}, {54, 163}, {18, 132}, {94, 200}, {49, 167}, {61, 171}, {35, 180}, {37, 178}, {66, 213}, {14, 150}, {45, 181}, {38, 190}, {31, 135}, {30, 134}, {15, 151}, {64, 216}, {10, 147}, {77, 212}, {46, 183}, {44, 181}, {20, 141}, {18, 139}, {12, 149}, {57, 160}, {26, 128}, {43, 177}, {42, 176}, {27, 129}, {48, 170}, {7, 156}, {79, 212}, {45, 182}, {43, 176}, {57, 162}, {66, 217}, {33, 189}, {78, 210}, {4, 153}, {32, 189}, {6, 155}, {58, 167}, {67, 222}, {69, 216}, {71, 218}, {16, 142}, {75, 213}, {40, 182}, {29, 131}, {28, 130}, {22, 136}, {53, 171}, {5, 154}, {93, 194}, {85, 202}, {84, 203}, {80, 207}, {19, 140}, {17, 142}, {11, 148}, {71, 216}, {100, 196}, {27, 186}, {97, 192}, {65, 224}, {63, 154}, {101, 192}, {51, 149}, {96, 198}, {56, 158}, {59, 157}, {62, 152}, {28, 187}, {47, 136}, {61, 154}, {96, 200}, {24, 177}, {34, 139}, {32, 137}, {12, 166}, {13, 167}, {54, 156}, {55, 157}, {33, 138}, {100, 207}, {36, 143}, {15, 162}, {99, 206}, {52, 153}, {11, 165}, {103, 201}, {35, 141}, {26, 180}, {18, 188}, {53, 154}, {17, 161}, {35, 147}, {29, 173}, {59, 138}, {10, 184}, {96, 210}, {82, 224}, {23, 165}, {14, 189}, {23, 164}, {11, 191}, {112, 196}, {38, 146}, {20, 160}, {37, 144}, {102, 211}, {21, 163}, {101, 211}, {41, 159}, {55, 129}, {33, 150}, {50, 133}, {62, 137}, {16, 168}, {39, 159}, {32, 152}, {31, 166}, {104, 209}, {98, 219}, {63, 134}, {19, 169}, {102, 220}, {30, 164}, {22, 172}, {21, 175}, {30, 165}, {99, 223}, {102, 218}, {20, 170}, {47, 145}, {21, 171}, {22, 169}, {36, 155}, {59, 132}, {99, 162}, {86, 148}, {24, 219}, {99, 160}, {95, 156}, {72, 139}, {36, 224}, {87, 146}, {97, 166}, {74, 130}, {100, 173}, {70, 140}, {90, 145}, {106, 161}, {12, 192}, {92, 144}, {90, 150}, {26, 214}, {13, 193}, {72, 132}, {90, 151}, {111, 162}, {31, 208}, {19, 195}, {112, 160}, {96, 176}, {78, 158}, {76, 156}, {20, 196}, {27, 202}, {16, 194}, {29, 207}, {28, 206}, {93, 142}, {103, 180}, {98, 177}, {68, 144}, {101, 177}, {83, 135}, {28, 201}, {109, 184}, {101, 176}, {94, 139}, {72, 158}, {26, 205}, {95, 136}, {29, 196}, {89, 128}, {88, 129}, {31, 198}, {70, 159}, {112, 170}, {91, 128}, {73, 149}, {95, 130}, {85, 181}, {111, 143}, {38, 199}, {82, 179}, {39, 197}, {107, 137}, {42, 200}, {53, 215}, {56, 219}, {84, 183}, {60, 223}, {106, 142}, {46, 203}, {87, 178}, {56, 221}, {44, 202}, {57, 223}, {48, 215}, {107, 140}, {104, 143}, {100, 131}, {52, 211}, {67, 164}, {52, 220}, {107, 131}, {37, 204}, {110, 135}, {87, 190}, {86, 191}, {85, 188}, {81, 184}, {34, 200}, {103, 141}, {35, 201}, {51, 217}, {56, 210}, {61, 215}, {43, 192}, {69, 174}, {41, 197}, {105, 133}, {42, 198}, {60, 209}, {94, 179}, {89, 180}, {67, 174}, {52, 218}, {64, 174}, {51, 220}, {84, 187}, {76, 163}, {70, 169}, {79, 191}, {105, 153}, {74, 187}, {65, 179}, {106, 152}, {77, 191}, {50, 193}, {104, 155}, {92, 175}, {86, 165}, {73, 186}, {60, 207}, {68, 183}, {45, 217}, {103, 147}, {97, 149}, {66, 182}, {72, 188}, {36, 209}, {110, 155}, {93, 168}, {83, 166}, {48, 197}, {54, 195}, {67, 182}, {40, 222}, {98, 148}, {58, 204}, {68, 178}, {57, 206}, {92, 171}, {58, 205}, {66, 181}, {42, 210}, {111, 151}, {80, 168}, {46, 214}, {45, 213}, {44, 212}, {43, 211}, {64, 185}, {81, 170}, {49, 205}, {69, 185}, {49, 204}, {112, 141}, {54, 203}, {55, 202}, {109, 147}, {92, 163}, {102, 153}, {94, 161} }>;

(II) A more general form is to represent the graph as the orbit of {107, 123} under the group generated by the following permutations:

a: (29, 100)
b: (52, 102)
c: (1, 2, 26, 46, 54, 19, 8, 16, 65, 31, 12, 51, 45, 40, 23, 5, 10, 35, 28, 7, 22, 32, 17, 34, 42, 43, 52, 71, 64, 38, 53, 48, 20, 57, 15, 25, 14, 9, 18, 56, 24, 4, 13, 49, 37, 21, 39, 29, 60, 36, 6, 3, 27, 44, 77, 11)(30, 63, 109, 103, 74, 95, 47, 62, 106, 94, 96, 101, 102, 75, 69, 87, 61, 81, 112, 99, 111, 90, 33, 59, 72, 78, 98, 105, 50, 58, 68, 92, 41, 100, 80, 104, 110, 88, 55, 85, 79, 86, 108, 91, 89, 84, 76, 70, 107, 93, 82, 83, 97, 73, 66, 67)(113, 128, 214, 203, 195, 140, 123, 194, 208, 166, 149, 217, 182, 164, 134, 126, 147, 201, 130, 136, 172, 152, 161, 200, 176, 211, 218, 216, 199, 190, 215, 170, 160, 162, 151, 150, 138, 132, 158, 219, 125, 133, 167, 204, 144, 175, 173, 207, 209, 155, 116, 129, 202, 212, 191, 118)(114, 120, 205, 183, 163, 159, 131, 168, 224, 135, 119, 186, 181, 222, 165, 115, 117, 180, 187, 156, 169, 137, 142, 179, 198, 192, 220, 213, 174, 146, 154, 184, 141, 206, 122, 145, 189, 124, 139, 210, 177, 153, 193, 185, 178, 171, 197, 196, 223, 143, 127, 121, 157, 188, 221, 148)
d: (22, 47)
e: (60, 80)
f: (5, 63)
g: (9, 59)
h: (64, 69)
m: (18, 72)
n1: (21, 92)
a1: (10, 109)
b1: (2, 4)(3, 7)(5, 11)(6, 15)(8, 17)(9, 19)(10, 24)(12, 28)(14, 22)(18, 39)(20, 42)(21, 44)(26, 52)(27, 54)(29, 34)(31, 57)(33, 47)(35, 43)(37, 45)(38, 40)(41, 72)(46, 51)(48, 56)(49, 71)(53, 77)(55, 76)(58, 75)(59, 70)(60, 65)(61, 79)(63, 86)(66, 68)(67, 87)(73, 84)(74, 97)(78, 81)(80, 82)(83, 99)(85, 92)(88, 95)(89, 102)(91, 105)(94, 100)(96, 112)(98, 109)(101, 103)(106, 107)(110, 111)(113, 114)(115, 118)(116, 122)(117, 125)(119, 130)(120, 133)(121, 136)(123, 142)(124, 140)(126, 148)(127, 151)(128, 153)(129, 156)(131, 161)(132, 159)(134, 165)(135, 162)(137, 152)(138, 169)(139, 173)(141, 176)(143, 155)(144, 181)(145, 150)(146, 164)(147, 177)(149, 187)(154, 191)(157, 195)(158, 197)(160, 198)(163, 202)(166, 206)(167, 193)(168, 194)(170, 210)(171, 212)(172, 189)(174, 199)(175, 188)(178, 182)(179, 207)(180, 211)(183, 217)(184, 219)(185, 216)(186, 203)(190, 222)(192, 201)(196, 200)(204, 213)(205, 218)(208, 223)(209, 224)(214, 220)(215, 221)
c1: (71, 75)
d1: (16, 93)
e1: (36, 104)
f1: (3, 88)
g1: (39, 41)
h1: (26, 89)
m1: (54, 76)
n2: (77, 79)
a2: (45, 66)
b2: (53, 61)
c2: (56, 78)
d2: (20, 112)
e2: (48, 81)
f2: (13, 50)
g2: (49, 58)
h2: (2, 11)(3, 19)(4, 5)(6, 8)(7, 9)(10, 24)(12, 39)(13, 23)(14, 22)(15, 17)(16, 36)(18, 28)(20, 42)(21, 51)(25, 32)(26, 77)(27, 54)(29, 31)(30, 50)(33, 47)(34, 57)(35, 56)(37, 45)(38, 71)(40, 49)(41, 97)(43, 48)(44, 46)(52, 53)(55, 76)(58, 67)(59, 95)(60, 65)(61, 102)(62, 90)(63, 105)(66, 68)(70, 88)(72, 74)(73, 92)(75, 87)(78, 103)(79, 89)(80, 82)(81, 101)(83, 100)(84, 85)(86, 91)(93, 104)(94, 99)(96, 112)(98, 109)(106, 111)(107, 110)(113, 118)(114, 115)(116, 140)(117, 148)(119, 159)(120, 165)(121, 169)(122, 124)(123, 155)(125, 126)(127, 137)(128, 191)(129, 195)(130, 132)(131, 135)(133, 134)(136, 138)(139, 206)(141, 210)(142, 143)(144, 217)(145, 189)(146, 193)(147, 219)(149, 175)(150, 172)(151, 152)(153, 154)(156, 157)(158, 201)(160, 200)(161, 162)(163, 186)(164, 167)(166, 173)(168, 224)(170, 176)(171, 220)(174, 185)(177, 184)(178, 213)(179, 223)(180, 221)(181, 183)(182, 204)(187, 188)(190, 218)(192, 197)(194, 209)(196, 198)(199, 216)(202, 203)(205, 222)(207, 208)(211, 215)(212, 214)
m2: (43, 101)
n3: (37, 68)
a3: (11, 86)
b3: (15, 111)
c3: (28, 74)
d3: (2, 91)
e3: (32, 62)
f3: (7, 95)
g3: (42, 96)
h3: (65, 82)
m3: (44, 85)
n4: (31, 83)
a4: (8, 107)
b4: (38, 87)
c4: (25, 90)
d4: (27, 55)
e4: (23, 30)
f4: (24, 98)
g4: (19, 70)
h4: (14, 33)
m4: (57, 99)
n5: (35, 103)
a5: (17, 106)
b5: (40, 67)
c5: (12, 97)
d5: (4, 105)
e5: (46, 84)
f5: (34, 94)
g5: (51, 73)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 224, 30 ]
224
-1 113 114 115 118
-2 113 117 128 120
-3 121 116 129 119
-4 133 114 125 153
-5 154 134 115 126
-6 155 135 116 127
-7 122 156 136 130
-8 123 137 140 131
-9 132 124 157 138
-10 147 126 117 184
-11 165 191 148 118
-12 166 192 149 119
-13 133 167 193 120
-14 121 189 138 150
-15 143 122 151 162
-16 123 168 194 142
-17 124 161 152 142
-18 132 188 158 139
-19 169 159 140 195
-20 170 160 141 196
-21 144 171 163 175
-22 145 136 169 172
-23 165 134 146 164
-24 177 125 148 219
-25 145 127 150 151
-26 180 214 128 205
-27 157 202 129 186
-28 187 201 206 130
-29 173 196 207 131
-30 165 134 146 164
-31 198 166 135 208
-32 189 137 172 152
-33 121 189 138 150
-34 200 179 139 161
-35 201 147 180 141
-36 143 209 155 224
-37 144 178 204 183
-38 199 178 146 190
-39 159 173 175 197
-40 222 182 174 164
-41 159 173 175 197
-42 176 198 210 200
-43 176 177 211 192
-44 188 212 202 181
-45 213 181 182 217
-46 187 203 214 183
-47 145 136 169 172
-48 170 215 184 197
-49 167 204 205 185
-50 133 167 193 120
-51 220 149 217 186
-52 220 211 218 153
-53 154 190 171 215
-54 156 203 195 163
-55 157 202 129 186
-56 210 221 158 219
-57 223 160 162 206
-58 167 204 205 185
-59 132 124 157 138
-60 209 168 223 207
-61 154 190 171 215
-62 189 137 172 152
-63 154 134 115 126
-64 199 216 174 185
-65 179 224 194 208
-66 213 181 182 217
-67 222 182 174 164
-68 144 178 204 183
-69 199 216 174 185
-70 169 159 140 195
-71 213 193 216 218
-72 132 188 158 139
-73 220 149 217 186
-74 187 201 206 130
-75 213 193 216 218
-76 156 203 195 163
-77 221 222 212 191
-78 210 221 158 219
-79 221 222 212 191
-80 209 168 223 207
-81 170 215 184 197
-82 179 224 194 208
-83 198 166 135 208
-84 187 203 214 183
-85 188 212 202 181
-86 165 191 148 118
-87 199 178 146 190
-88 121 116 129 119
-89 180 214 128 205
-90 145 127 150 151
-91 113 117 128 120
-92 144 171 163 175
-93 123 168 194 142
-94 200 179 139 161
-95 122 156 136 130
-96 176 198 210 200
-97 166 192 149 119
-98 177 125 148 219
-99 223 160 162 206
-100 173 196 207 131
-101 176 177 211 192
-102 220 211 218 153
-103 201 147 180 141
-104 143 209 155 224
-105 133 114 125 153
-106 124 161 152 142
-107 123 137 140 131
-108 113 114 115 118
-109 147 126 117 184
-110 155 135 116 127
-111 143 122 151 162
-112 170 160 141 196
-113 1 2 91 108
-114 1 4 105 108
-115 1 5 63 108
-116 88 110 3 6
-117 2 91 10 109
-118 11 1 86 108
-119 88 12 3 97
-120 2 13 91 50
-121 33 88 3 14
-122 111 15 7 95
-123 16 93 8 107
-124 59 17 106 9
-125 24 4 105 98
-126 5 63 10 109
-127 110 90 25 6
-128 89 2 91 26
-129 55 88 3 27
-130 28 7 95 74
-131 100 29 8 107
-132 59 72 18 9
-133 13 4 50 105
-134 23 5 30 63
-135 110 6 83 31
-136 22 47 7 95
-137 62 8 107 32
-138 33 14 59 9
-139 34 72 94 18
-140 70 8 19 107
-141 35 112 103 20
-142 16 93 17 106
-143 111 36 15 104
-144 68 37 92 21
-145 22 90 25 47
-146 23 38 30 87
-147 35 103 10 109
-148 11 24 86 98
-149 12 51 73 97
-150 33 90 14 25
-151 111 90 25 15
-152 17 62 106 32
-153 102 4 105 52
-154 5 61 63 53
-155 110 36 104 6
-156 7 95 54 76
-157 55 59 27 9
-158 56 78 72 18
-159 70 39 19 41
-160 99 57 112 20
-161 34 17 94 106
-162 99 111 57 15
-163 92 21 54 76
-164 23 67 40 30
-165 11 23 30 86
-166 12 83 31 97
-167 13 58 49 50
-168 80 16 60 93
-169 22 47 70 19
-170 112 48 81 20
-171 92 61 53 21
-172 22 47 62 32
-173 100 39 29 41
-174 67 69 40 64
-175 92 39 41 21
-176 101 96 42 43
-177 24 101 43 98
-178 68 37 38 87
-179 34 82 94 65
-180 89 35 26 103
-181 44 66 45 85
-182 66 45 67 40
-183 46 68 37 84
-184 48 81 10 109
-185 58 69 49 64
-186 55 27 51 73
-187 46 28 84 74
-188 44 72 18 85
-189 33 14 62 32
-190 38 61 53 87
-191 11 77 79 86
-192 12 101 97 43
-193 13 71 50 75
-194 16 82 93 65
-195 70 19 54 76
-196 100 112 29 20
-197 48 81 39 41
-198 83 96 31 42
-199 69 38 64 87
-200 34 94 96 42
-201 35 103 28 74
-202 44 55 27 85
-203 46 84 54 76
-204 68 58 37 49
-205 89 58 26 49
-206 99 57 28 74
-207 100 80 60 29
-208 82 83 31 65
-209 36 80 60 104
-210 56 78 96 42
-211 101 102 52 43
-212 44 77 79 85
-213 66 45 71 75
-214 89 46 26 84
-215 48 81 61 53
-216 69 71 64 75
-217 66 45 51 73
-218 102 71 52 75
-219 56 78 24 98
-220 102 51 73 52
-221 77 56 78 79
-222 77 67 79 40
-223 99 57 80 60
-224 36 82 104 65
0

**************