[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 225, 1 ] =
C_225(1,26).
(I) Following is a form readable by MAGMA:
g:=Graph<225|{ {2, 3}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216,
217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205},
{202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190,
191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179},
{176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164,
165}, {162, 163}, {160, 161}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81},
{78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65},
{62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {4, 5},
{6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22,
23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38,
39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {90, 91}, {92, 93}, {94,
95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108,
109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121},
{122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134,
135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147},
{148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {1, 2},
{221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197,
198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174},
{169, 170}, {165, 166}, {161, 162}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73,
74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {5, 6}, {9, 10}, {13,
14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45,
46}, {49, 50}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113,
114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138},
{141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {3, 4}, {219, 220},
{211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163,
164}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {51, 52}, {11, 12}, {19, 20}, {27,
28}, {35, 36}, {43, 44}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123,
124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {215, 216}, {199,
200}, {183, 184}, {167, 168}, {87, 88}, {71, 72}, {55, 56}, {23, 24}, {39, 40},
{103, 104}, {119, 120}, {135, 136}, {151, 152}, {1, 27}, {197, 223}, {196, 222},
{193, 219}, {192, 218}, {165, 191}, {164, 190}, {161, 187}, {160, 186}, {69,
95}, {68, 94}, {65, 91}, {64, 90}, {4, 30}, {5, 31}, {32, 58}, {33, 59}, {36,
62}, {37, 63}, {96, 122}, {97, 123}, {100, 126}, {101, 127}, {128, 154}, {129,
155}, {132, 158}, {133, 159}, {2, 28}, {195, 221}, {194, 220}, {163, 189}, {162,
188}, {67, 93}, {66, 92}, {3, 29}, {34, 60}, {35, 61}, {98, 124}, {99, 125},
{130, 156}, {131, 157}, {15, 16}, {207, 208}, {175, 176}, {79, 80}, {47, 48},
{111, 112}, {143, 144}, {6, 32}, {199, 225}, {198, 224}, {159, 185}, {87, 113},
{86, 112}, {79, 105}, {78, 104}, {71, 97}, {70, 96}, {7, 33}, {14, 40}, {15,
41}, {22, 48}, {23, 49}, {30, 56}, {31, 57}, {94, 120}, {95, 121}, {134, 160},
{135, 161}, {142, 168}, {143, 169}, {150, 176}, {151, 177}, {158, 184}, {8, 34},
{88, 114}, {77, 103}, {76, 102}, {73, 99}, {72, 98}, {9, 35}, {12, 38}, {13,
39}, {24, 50}, {25, 51}, {28, 54}, {29, 55}, {89, 115}, {92, 118}, {93, 119},
{136, 162}, {137, 163}, {140, 166}, {141, 167}, {152, 178}, {153, 179}, {156,
182}, {157, 183}, {10, 36}, {75, 101}, {74, 100}, {11, 37}, {26, 52}, {27, 53},
{90, 116}, {91, 117}, {138, 164}, {139, 165}, {154, 180}, {155, 181}, {16, 42},
{85, 111}, {84, 110}, {81, 107}, {80, 106}, {17, 43}, {20, 46}, {21, 47}, {144,
170}, {145, 171}, {148, 174}, {149, 175}, {18, 44}, {83, 109}, {82, 108}, {19,
45}, {146, 172}, {147, 173}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {38,
64}, {191, 217}, {190, 216}, {183, 209}, {182, 208}, {175, 201}, {174, 200},
{167, 193}, {166, 192}, {63, 89}, {62, 88}, {55, 81}, {54, 80}, {39, 65}, {46,
72}, {47, 73}, {40, 66}, {189, 215}, {188, 214}, {185, 211}, {184, 210}, {173,
199}, {172, 198}, {169, 195}, {168, 194}, {61, 87}, {60, 86}, {57, 83}, {56,
82}, {41, 67}, {44, 70}, {45, 71}, {42, 68}, {187, 213}, {186, 212}, {171, 197},
{170, 196}, {59, 85}, {58, 84}, {43, 69}, {48, 74}, {181, 207}, {180, 206},
{177, 203}, {176, 202}, {53, 79}, {52, 78}, {49, 75}, {50, 76}, {179, 205},
{178, 204}, {51, 77}, {63, 64}, {191, 192}, {8, 207}, {16, 215}, {24, 223}, {1,
200}, {3, 202}, {5, 204}, {7, 206}, {17, 216}, {19, 218}, {21, 220}, {23, 222},
{2, 201}, {6, 205}, {18, 217}, {22, 221}, {4, 203}, {20, 219}, {9, 208}, {11,
210}, {13, 212}, {15, 214}, {10, 209}, {14, 213}, {12, 211}, {1, 225}, {102,
128}, {103, 129}, {110, 136}, {111, 137}, {118, 144}, {119, 145}, {126, 152},
{127, 153}, {104, 130}, {105, 131}, {108, 134}, {109, 135}, {120, 146}, {121,
147}, {124, 150}, {125, 151}, {106, 132}, {107, 133}, {122, 148}, {123, 149},
{25, 224}, {112, 138}, {113, 139}, {116, 142}, {117, 143}, {26, 225}, {114,
140}, {115, 141}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 27)(3, 53)(4, 79)(5, 105)(6, 131)(7, 157)(8, 183)(9, 209)(11, 36)(12,
62)(13, 88)(14, 114)(15, 140)(16, 166)(17, 192)(18, 218)(20, 45)(21, 71)(22,
97)(23, 123)(24, 149)(25, 175)(26, 201)(29, 54)(30, 80)(31, 106)(32, 132)(33,
158)(34, 184)(35, 210)(38, 63)(39, 89)(40, 115)(41, 141)(42, 167)(43, 193)(44,
219)(47, 72)(48, 98)(49, 124)(50, 150)(51, 176)(52, 202)(56, 81)(57, 107)(58,
133)(59, 159)(60, 185)(61, 211)(65, 90)(66, 116)(67, 142)(68, 168)(69, 194)(70,
220)(74, 99)(75, 125)(76, 151)(77, 177)(78, 203)(83, 108)(84, 134)(85, 160)(86,
186)(87, 212)(92, 117)(93, 143)(94, 169)(95, 195)(96, 221)(101, 126)(102,
152)(103, 178)(104, 204)(110, 135)(111, 161)(112, 187)(113, 213)(119, 144)(120,
170)(121, 196)(122, 222)(128, 153)(129, 179)(130, 205)(137, 162)(138, 188)(139,
214)(146, 171)(147, 197)(148, 223)(155, 180)(156, 206)(164, 189)(165, 215)(173,
198)(174, 224)(182, 207)(191, 216)(200, 225)
c: (2, 200)(3, 174)(4, 148)(5, 122)(6, 96)(7, 70)(8, 44)(9, 18)(10, 217)(11,
191)(12, 165)(13, 139)(14, 113)(15, 87)(16, 61)(17, 35)(19, 208)(20, 182)(21,
156)(22, 130)(23, 104)(24, 78)(25, 52)(27, 225)(28, 199)(29, 173)(30, 147)(31,
121)(32, 95)(33, 69)(34, 43)(36, 216)(37, 190)(38, 164)(39, 138)(40, 112)(41,
86)(42, 60)(45, 207)(46, 181)(47, 155)(48, 129)(49, 103)(50, 77)(53, 224)(54,
198)(55, 172)(56, 146)(57, 120)(58, 94)(59, 68)(62, 215)(63, 189)(64, 163)(65,
137)(66, 111)(67, 85)(71, 206)(72, 180)(73, 154)(74, 128)(75, 102)(79, 223)(80,
197)(81, 171)(82, 145)(83, 119)(84, 93)(88, 214)(89, 188)(90, 162)(91, 136)(92,
110)(97, 205)(98, 179)(99, 153)(100, 127)(105, 222)(106, 196)(107, 170)(108,
144)(109, 118)(114, 213)(115, 187)(116, 161)(117, 135)(123, 204)(124, 178)(125,
152)(131, 221)(132, 195)(133, 169)(134, 143)(140, 212)(141, 186)(142, 160)(149,
203)(150, 177)(157, 220)(158, 194)(159, 168)(166, 211)(167, 185)(175, 202)(183,
219)(184, 193)(192, 210)(209, 218)
C4[ 225, 1 ]
225
-1 2 200 27 225
-2 1 3 201 28
-3 2 4 202 29
-4 3 5 203 30
-5 4 6 204 31
-6 5 7 205 32
-7 33 6 8 206
-8 34 7 9 207
-9 35 8 10 208
-10 11 209 36 9
-11 12 210 37 10
-12 11 13 211 38
-13 12 14 212 39
-14 13 15 213 40
-15 14 16 214 41
-16 15 17 215 42
-17 16 18 216 43
-18 44 17 19 217
-19 45 18 20 218
-20 46 19 21 219
-21 22 220 47 20
-22 23 221 48 21
-23 22 24 222 49
-24 23 25 223 50
-25 24 26 224 51
-26 25 27 225 52
-27 1 26 28 53
-28 2 27 29 54
-29 55 3 28 30
-30 56 4 29 31
-31 57 5 30 32
-32 33 58 6 31
-33 34 59 7 32
-34 33 35 60 8
-35 34 36 61 9
-36 35 37 62 10
-37 11 36 38 63
-38 12 37 39 64
-39 13 38 40 65
-40 66 14 39 41
-41 67 15 40 42
-42 68 16 41 43
-43 44 69 17 42
-44 45 70 18 43
-45 44 46 71 19
-46 45 47 72 20
-47 46 48 73 21
-48 22 47 49 74
-49 23 48 50 75
-50 24 49 51 76
-51 77 25 50 52
-52 78 26 51 53
-53 79 27 52 54
-54 55 80 28 53
-55 56 81 29 54
-56 55 57 82 30
-57 56 58 83 31
-58 57 59 84 32
-59 33 58 60 85
-60 34 59 61 86
-61 35 60 62 87
-62 88 36 61 63
-63 89 37 62 64
-64 90 38 63 65
-65 66 91 39 64
-66 67 92 40 65
-67 66 68 93 41
-68 67 69 94 42
-69 68 70 95 43
-70 44 69 71 96
-71 45 70 72 97
-72 46 71 73 98
-73 99 47 72 74
-74 100 48 73 75
-75 101 49 74 76
-76 77 102 50 75
-77 78 103 51 76
-78 77 79 104 52
-79 78 80 105 53
-80 79 81 106 54
-81 55 80 82 107
-82 56 81 83 108
-83 57 82 84 109
-84 110 58 83 85
-85 111 59 84 86
-86 112 60 85 87
-87 88 113 61 86
-88 89 114 62 87
-89 88 90 115 63
-90 89 91 116 64
-91 90 92 117 65
-92 66 91 93 118
-93 67 92 94 119
-94 68 93 95 120
-95 121 69 94 96
-96 122 70 95 97
-97 123 71 96 98
-98 99 124 72 97
-99 100 125 73 98
-100 99 101 126 74
-101 100 102 127 75
-102 101 103 128 76
-103 77 102 104 129
-104 78 103 105 130
-105 79 104 106 131
-106 132 80 105 107
-107 133 81 106 108
-108 134 82 107 109
-109 110 135 83 108
-110 111 136 84 109
-111 110 112 137 85
-112 111 113 138 86
-113 112 114 139 87
-114 88 113 115 140
-115 89 114 116 141
-116 90 115 117 142
-117 143 91 116 118
-118 144 92 117 119
-119 145 93 118 120
-120 121 146 94 119
-121 122 147 95 120
-122 121 123 148 96
-123 122 124 149 97
-124 123 125 150 98
-125 99 124 126 151
-126 100 125 127 152
-127 101 126 128 153
-128 154 102 127 129
-129 155 103 128 130
-130 156 104 129 131
-131 132 157 105 130
-132 133 158 106 131
-133 132 134 159 107
-134 133 135 160 108
-135 134 136 161 109
-136 110 135 137 162
-137 111 136 138 163
-138 112 137 139 164
-139 165 113 138 140
-140 166 114 139 141
-141 167 115 140 142
-142 143 168 116 141
-143 144 169 117 142
-144 143 145 170 118
-145 144 146 171 119
-146 145 147 172 120
-147 121 146 148 173
-148 122 147 149 174
-149 123 148 150 175
-150 176 124 149 151
-151 177 125 150 152
-152 178 126 151 153
-153 154 179 127 152
-154 155 180 128 153
-155 154 156 181 129
-156 155 157 182 130
-157 156 158 183 131
-158 132 157 159 184
-159 133 158 160 185
-160 134 159 161 186
-161 187 135 160 162
-162 188 136 161 163
-163 189 137 162 164
-164 165 190 138 163
-165 166 191 139 164
-166 165 167 192 140
-167 166 168 193 141
-168 167 169 194 142
-169 143 168 170 195
-170 144 169 171 196
-171 145 170 172 197
-172 198 146 171 173
-173 199 147 172 174
-174 200 148 173 175
-175 176 201 149 174
-176 177 202 150 175
-177 176 178 203 151
-178 177 179 204 152
-179 178 180 205 153
-180 154 179 181 206
-181 155 180 182 207
-182 156 181 183 208
-183 209 157 182 184
-184 210 158 183 185
-185 211 159 184 186
-186 187 212 160 185
-187 188 213 161 186
-188 187 189 214 162
-189 188 190 215 163
-190 189 191 216 164
-191 165 190 192 217
-192 166 191 193 218
-193 167 192 194 219
-194 220 168 193 195
-195 221 169 194 196
-196 222 170 195 197
-197 198 223 171 196
-198 199 224 172 197
-199 198 200 225 173
-200 1 199 201 174
-201 2 200 202 175
-202 176 3 201 203
-203 177 4 202 204
-204 178 5 203 205
-205 179 6 204 206
-206 180 7 205 207
-207 181 8 206 208
-208 209 182 9 207
-209 210 183 10 208
-210 11 209 211 184
-211 12 210 212 185
-212 13 211 213 186
-213 187 14 212 214
-214 188 15 213 215
-215 189 16 214 216
-216 190 17 215 217
-217 191 18 216 218
-218 192 19 217 219
-219 220 193 20 218
-220 221 194 21 219
-221 22 220 222 195
-222 23 221 223 196
-223 24 222 224 197
-224 198 25 223 225
-225 1 199 26 224
0