[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 225, 3 ] =
{4,4}_12,9.
(I) Following is a form readable by MAGMA:
g:=Graph<225|{ {2, 3}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216,
217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205},
{202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190,
191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179},
{176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164,
165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153},
{148, 149}, {146, 147}, {144, 145}, {142, 143}, {72, 73}, {70, 71}, {68, 69},
{66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53},
{50, 51}, {48, 49}, {46, 47}, {44, 45}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12,
13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28,
29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {74,
75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90,
91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105},
{106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118,
119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131},
{132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {1, 2}, {221, 222},
{217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193,
194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170},
{165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141,
142}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {5,
6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37,
38}, {41, 42}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97,
98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122},
{125, 126}, {129, 130}, {133, 134}, {137, 138}, {3, 4}, {219, 220}, {211, 212},
{203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155,
156}, {147, 148}, {67, 68}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20},
{27, 28}, {35, 36}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {115, 116}, {123,
124}, {131, 132}, {139, 140}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167,
168}, {151, 152}, {71, 72}, {55, 56}, {23, 24}, {39, 40}, {87, 88}, {103, 104},
{119, 120}, {135, 136}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48},
{79, 80}, {111, 112}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {1, 75}, {4,
79}, {148, 223}, {144, 219}, {52, 127}, {48, 123}, {16, 91}, {20, 95}, {32,
107}, {36, 111}, {128, 203}, {132, 207}, {1, 76}, {147, 222}, {145, 220}, {51,
126}, {49, 124}, {3, 78}, {17, 92}, {19, 94}, {33, 108}, {35, 110}, {129, 204},
{131, 206}, {2, 77}, {146, 221}, {50, 125}, {18, 93}, {34, 109}, {130, 205}, {5,
80}, {143, 218}, {141, 216}, {47, 122}, {45, 120}, {7, 82}, {13, 88}, {15, 90},
{37, 112}, {39, 114}, {133, 208}, {135, 210}, {6, 81}, {142, 217}, {46, 121},
{14, 89}, {38, 113}, {134, 209}, {8, 83}, {44, 119}, {12, 87}, {40, 115}, {136,
211}, {140, 215}, {9, 84}, {43, 118}, {11, 86}, {41, 116}, {137, 212}, {139,
214}, {10, 85}, {42, 117}, {138, 213}, {21, 96}, {149, 224}, {23, 98}, {29,
104}, {31, 106}, {151, 225}, {22, 97}, {150, 225}, {30, 105}, {24, 99}, {28,
103}, {25, 100}, {27, 102}, {26, 101}, {191, 192}, {63, 64}, {22, 151}, {70,
199}, {68, 197}, {66, 195}, {64, 193}, {62, 191}, {60, 189}, {58, 187}, {56,
185}, {54, 183}, {52, 181}, {50, 179}, {48, 177}, {46, 175}, {44, 173}, {24,
153}, {26, 155}, {28, 157}, {30, 159}, {32, 161}, {34, 163}, {36, 165}, {38,
167}, {40, 169}, {42, 171}, {72, 201}, {74, 203}, {25, 154}, {69, 198}, {65,
194}, {61, 190}, {57, 186}, {53, 182}, {49, 178}, {45, 174}, {29, 158}, {33,
162}, {37, 166}, {41, 170}, {73, 202}, {27, 156}, {67, 196}, {59, 188}, {51,
180}, {43, 172}, {35, 164}, {75, 204}, {23, 152}, {71, 200}, {55, 184}, {39,
168}, {47, 176}, {53, 128}, {63, 138}, {61, 136}, {55, 130}, {117, 192}, {119,
194}, {125, 200}, {127, 202}, {54, 129}, {62, 137}, {118, 193}, {126, 201}, {56,
131}, {60, 135}, {120, 195}, {124, 199}, {57, 132}, {59, 134}, {121, 196}, {123,
198}, {31, 160}, {58, 133}, {122, 197}, {64, 139}, {68, 143}, {80, 155}, {84,
159}, {96, 171}, {100, 175}, {112, 187}, {116, 191}, {1, 205}, {2, 206}, {3,
207}, {16, 220}, {17, 221}, {18, 222}, {19, 223}, {65, 140}, {67, 142}, {81,
156}, {83, 158}, {97, 172}, {99, 174}, {113, 188}, {115, 190}, {66, 141}, {82,
157}, {98, 173}, {114, 189}, {4, 208}, {5, 209}, {6, 210}, {7, 211}, {12, 216},
{13, 217}, {14, 218}, {15, 219}, {69, 144}, {71, 146}, {77, 152}, {79, 154},
{101, 176}, {103, 178}, {109, 184}, {111, 186}, {70, 145}, {78, 153}, {102,
177}, {110, 185}, {76, 150}, {72, 147}, {76, 151}, {104, 179}, {108, 183}, {8,
212}, {9, 213}, {10, 214}, {11, 215}, {73, 148}, {75, 150}, {105, 180}, {107,
182}, {74, 149}, {106, 181}, {20, 224}, {21, 225}, {85, 160}, {87, 162}, {93,
168}, {95, 170}, {86, 161}, {94, 169}, {88, 163}, {92, 167}, {89, 164}, {91,
166}, {63, 192}, {90, 165}, {127, 128} }>;
(II) A more general form is to represent the graph as the orbit of {2, 3}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75)(76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148,
149, 150)(151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 205, 75, 76)(3, 130, 74, 151)(4, 55, 73, 22)(5, 184, 72, 97)(6, 109, 71,
172)(7, 34, 70, 43)(8, 163, 69, 118)(9, 88, 68, 193)(10, 13, 67, 64)(11, 217,
66, 139)(12, 142, 65, 214)(14, 196, 63, 85)(15, 121, 62, 160)(16, 46, 61,
31)(17, 175, 60, 106)(18, 100, 59, 181)(19, 25, 58, 52)(20, 154, 57, 127)(21,
79, 56, 202)(23, 208, 54, 148)(24, 133, 53, 223)(26, 187, 51, 94)(27, 112, 50,
169)(28, 37, 49, 40)(29, 166, 48, 115)(30, 91, 47, 190)(32, 220, 45, 136)(33,
145, 44, 211)(35, 199, 42, 82)(36, 124, 41, 157)(38, 178, 39, 103)(77, 206, 204,
150)(78, 131, 203, 225)(80, 185, 201, 96)(81, 110, 200, 171)(83, 164, 198,
117)(84, 89, 197, 192)(86, 218, 195, 138)(87, 143, 194, 213)(90, 122, 191,
159)(92, 176, 189, 105)(93, 101, 188, 180)(95, 155, 186, 126)(98, 209, 183,
147)(99, 134, 182, 222)(102, 113, 179, 168)(104, 167, 177, 114)(107, 221, 174,
135)(108, 146, 173, 210)(111, 125, 170, 156)(116, 158, 165, 123)(119, 212, 162,
144)(120, 137, 161, 219)(128, 224, 153, 132)(129, 149, 152, 207)(140, 215, 216,
141)
C4[ 225, 3 ]
225
-1 2 205 75 76
-2 77 1 3 206
-3 78 2 4 207
-4 79 3 5 208
-5 209 80 4 6
-6 210 81 5 7
-7 211 82 6 8
-8 212 83 7 9
-9 213 84 8 10
-10 11 214 85 9
-11 12 215 86 10
-12 11 13 216 87
-13 88 12 14 217
-14 89 13 15 218
-15 90 14 16 219
-16 220 91 15 17
-17 221 92 16 18
-18 222 93 17 19
-19 223 94 18 20
-20 224 95 19 21
-21 22 225 96 20
-22 23 151 97 21
-23 22 24 152 98
-24 99 23 25 153
-25 154 100 24 26
-26 155 101 25 27
-27 156 102 26 28
-28 157 103 27 29
-29 158 104 28 30
-30 159 105 29 31
-31 160 106 30 32
-32 33 161 107 31
-33 34 162 108 32
-34 33 35 163 109
-35 110 34 36 164
-36 165 111 35 37
-37 166 112 36 38
-38 167 113 37 39
-39 168 114 38 40
-40 169 115 39 41
-41 170 116 40 42
-42 171 117 41 43
-43 44 172 118 42
-44 45 173 119 43
-45 44 46 174 120
-46 121 45 47 175
-47 176 122 46 48
-48 177 123 47 49
-49 178 124 48 50
-50 179 125 49 51
-51 180 126 50 52
-52 181 127 51 53
-53 182 128 52 54
-54 55 183 129 53
-55 56 184 130 54
-56 55 57 185 131
-57 132 56 58 186
-58 187 133 57 59
-59 188 134 58 60
-60 189 135 59 61
-61 190 136 60 62
-62 191 137 61 63
-63 192 138 62 64
-64 193 139 63 65
-65 66 194 140 64
-66 67 195 141 65
-67 66 68 196 142
-68 143 67 69 197
-69 198 144 68 70
-70 199 145 69 71
-71 200 146 70 72
-72 201 147 71 73
-73 202 148 72 74
-74 203 149 73 75
-75 1 204 150 74
-76 77 1 150 151
-77 78 2 152 76
-78 77 79 3 153
-79 154 78 80 4
-80 155 79 81 5
-81 156 80 82 6
-82 157 81 83 7
-83 158 82 84 8
-84 159 83 85 9
-85 160 84 86 10
-86 11 161 85 87
-87 88 12 162 86
-88 89 13 163 87
-89 88 90 14 164
-90 165 89 91 15
-91 166 90 92 16
-92 167 91 93 17
-93 168 92 94 18
-94 169 93 95 19
-95 170 94 96 20
-96 171 95 97 21
-97 22 172 96 98
-98 99 23 173 97
-99 100 24 174 98
-100 99 101 25 175
-101 176 100 102 26
-102 177 101 103 27
-103 178 102 104 28
-104 179 103 105 29
-105 180 104 106 30
-106 181 105 107 31
-107 182 106 108 32
-108 33 183 107 109
-109 110 34 184 108
-110 111 35 185 109
-111 110 112 36 186
-112 187 111 113 37
-113 188 112 114 38
-114 189 113 115 39
-115 190 114 116 40
-116 191 115 117 41
-117 192 116 118 42
-118 193 117 119 43
-119 44 194 118 120
-120 121 45 195 119
-121 122 46 196 120
-122 121 123 47 197
-123 198 122 124 48
-124 199 123 125 49
-125 200 124 126 50
-126 201 125 127 51
-127 202 126 128 52
-128 203 127 129 53
-129 204 128 130 54
-130 55 205 129 131
-131 132 56 206 130
-132 133 57 207 131
-133 132 134 58 208
-134 209 133 135 59
-135 210 134 136 60
-136 211 135 137 61
-137 212 136 138 62
-138 213 137 139 63
-139 214 138 140 64
-140 215 139 141 65
-141 66 216 140 142
-142 143 67 217 141
-143 144 68 218 142
-144 143 145 69 219
-145 220 144 146 70
-146 221 145 147 71
-147 222 146 148 72
-148 223 147 149 73
-149 224 148 150 74
-150 225 149 75 76
-151 22 225 152 76
-152 77 23 151 153
-153 154 78 24 152
-154 155 79 25 153
-155 154 156 80 26
-156 155 157 81 27
-157 156 158 82 28
-158 157 159 83 29
-159 158 160 84 30
-160 159 161 85 31
-161 160 162 86 32
-162 33 161 163 87
-163 88 34 162 164
-164 165 89 35 163
-165 166 90 36 164
-166 165 167 91 37
-167 166 168 92 38
-168 167 169 93 39
-169 168 170 94 40
-170 169 171 95 41
-171 170 172 96 42
-172 171 173 97 43
-173 44 172 174 98
-174 99 45 173 175
-175 176 100 46 174
-176 177 101 47 175
-177 176 178 102 48
-178 177 179 103 49
-179 178 180 104 50
-180 179 181 105 51
-181 180 182 106 52
-182 181 183 107 53
-183 182 184 108 54
-184 55 183 185 109
-185 110 56 184 186
-186 187 111 57 185
-187 188 112 58 186
-188 187 189 113 59
-189 188 190 114 60
-190 189 191 115 61
-191 190 192 116 62
-192 191 193 117 63
-193 192 194 118 64
-194 193 195 119 65
-195 66 194 196 120
-196 121 67 195 197
-197 198 122 68 196
-198 199 123 69 197
-199 198 200 124 70
-200 199 201 125 71
-201 200 202 126 72
-202 201 203 127 73
-203 202 204 128 74
-204 203 205 129 75
-205 1 204 206 130
-206 2 205 207 131
-207 132 3 206 208
-208 209 133 4 207
-209 210 134 5 208
-210 209 211 135 6
-211 210 212 136 7
-212 211 213 137 8
-213 212 214 138 9
-214 213 215 139 10
-215 11 214 216 140
-216 12 215 217 141
-217 13 216 218 142
-218 143 14 217 219
-219 220 144 15 218
-220 221 145 16 219
-221 220 222 146 17
-222 221 223 147 18
-223 222 224 148 19
-224 223 225 149 20
-225 224 150 151 21
0