C4graphGraph forms for C4 [ 225, 7 ] = UG(ATD[225,3])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 225, 7 ] = UG(ATD[225,3]).

(I) Following is a form readable by MAGMA:

g:=Graph<225|{ {105, 107}, {180, 182}, {145, 147}, {100, 103}, {138, 142}, {16, 21}, {81, 87}, {210, 212}, {193, 199}, {1, 6}, {48, 55}, {89, 94}, {160, 168}, {165, 173}, {113, 120}, {1, 11}, {167, 173}, {39, 44}, {192, 203}, {18, 30}, {6, 11}, {69, 72}, {51, 61}, {211, 221}, {132, 138}, {116, 122}, {181, 186}, {208, 223}, {34, 50}, {1, 16}, {201, 216}, {194, 211}, {171, 186}, {141, 156}, {97, 112}, {111, 126}, {160, 178}, {1, 21}, {165, 177}, {143, 155}, {68, 80}, {66, 86}, {64, 84}, {11, 31}, {106, 126}, {108, 120}, {102, 115}, {44, 58}, {206, 216}, {46, 56}, {38, 49}, {128, 153}, {205, 212}, {196, 222}, {70, 93}, {78, 85}, {6, 26}, {173, 177}, {73, 85}, {71, 91}, {101, 121}, {34, 63}, {166, 187}, {43, 54}, {133, 155}, {131, 156}, {83, 114}, {139, 170}, {131, 162}, {93, 124}, {6, 36}, {11, 41}, {65, 98}, {158, 189}, {152, 187}, {21, 51}, {29, 58}, {71, 96}, {79, 104}, {16, 56}, {152, 176}, {30, 54}, {21, 61}, {135, 174}, {136, 161}, {76, 96}, {130, 172}, {142, 190}, {77, 127}, {141, 191}, {132, 183}, {148, 167}, {146, 161}, {24, 44}, {138, 190}, {70, 114}, {81, 101}, {14, 59}, {20, 33}, {31, 41}, {66, 116}, {92, 106}, {94, 104}, {217, 225}, {79, 118}, {8, 50}, {89, 99}, {16, 46}, {156, 162}, {154, 164}, {152, 166}, {26, 36}, {10, 53}, {145, 174}, {139, 180}, {28, 35}, {24, 39}, {20, 84}, {140, 204}, {24, 88}, {15, 78}, {148, 214}, {31, 91}, {130, 198}, {36, 96}, {55, 114}, {56, 126}, {3, 75}, {43, 99}, {38, 110}, {61, 116}, {130, 203}, {37, 111}, {155, 209}, {143, 197}, {13, 70}, {134, 205}, {46, 101}, {26, 86}, {41, 101}, {54, 123}, {58, 119}, {14, 64}, {134, 200}, {19, 93}, {147, 220}, {157, 210}, {33, 115}, {19, 70}, {54, 99}, {35, 118}, {5, 83}, {146, 196}, {63, 105}, {29, 75}, {9, 94}, {56, 111}, {46, 121}, {23, 79}, {31, 71}, {26, 66}, {51, 106}, {137, 208}, {150, 204}, {39, 124}, {44, 119}, {4, 89}, {23, 74}, {143, 209}, {151, 201}, {49, 110}, {13, 109}, {190, 222}, {175, 207}, {128, 224}, {9, 104}, {182, 215}, {59, 89}, {55, 83}, {165, 193}, {133, 225}, {30, 123}, {59, 94}, {53, 80}, {47, 74}, {38, 64}, {191, 217}, {4, 99}, {187, 220}, {172, 203}, {169, 206}, {25, 113}, {36, 76}, {188, 213}, {50, 88}, {168, 194}, {160, 202}, {2, 110}, {35, 79}, {176, 221}, {183, 218}, {43, 69}, {51, 92}, {169, 198}, {19, 98}, {58, 75}, {4, 118}, {181, 199}, {49, 67}, {38, 84}, {14, 123}, {162, 215}, {57, 76}, {27, 109}, {185, 207}, {178, 197}, {41, 81}, {178, 202}, {163, 219}, {5, 124}, {29, 103}, {39, 93}, {34, 88}, {59, 64}, {10, 119}, {13, 114}, {61, 66}, {23, 104}, {7, 135}, {60, 188}, {12, 140}, {82, 210}, {90, 218}, {95, 223}, {24, 154}, {65, 195}, {8, 139}, {37, 166}, {18, 145}, {5, 129}, {22, 146}, {87, 211}, {3, 134}, {67, 198}, {25, 158}, {9, 128}, {48, 185}, {28, 150}, {47, 165}, {45, 167}, {87, 221}, {40, 163}, {19, 159}, {49, 189}, {20, 153}, {60, 178}, {62, 176}, {77, 194}, {95, 208}, {9, 153}, {68, 212}, {14, 158}, {78, 223}, {112, 225}, {33, 179}, {3, 144}, {72, 219}, {82, 193}, {95, 203}, {10, 159}, {63, 170}, {42, 191}, {15, 154}, {82, 199}, {52, 162}, {68, 210}, {17, 139}, {23, 140}, {32, 187}, {42, 182}, {8, 149}, {52, 169}, {42, 180}, {69, 219}, {73, 215}, {95, 192}, {98, 195}, {13, 175}, {34, 129}, {122, 217}, {25, 189}, {27, 190}, {53, 144}, {30, 184}, {32, 134}, {4, 163}, {50, 149}, {42, 141}, {40, 143}, {7, 174}, {18, 184}, {74, 224}, {2, 169}, {125, 214}, {15, 164}, {117, 222}, {43, 135}, {100, 200}, {45, 128}, {62, 147}, {109, 195}, {62, 145}, {102, 201}, {103, 200}, {108, 220}, {2, 179}, {113, 192}, {117, 196}, {100, 208}, {5, 188}, {45, 148}, {29, 164}, {22, 175}, {12, 181}, {57, 131}, {17, 170}, {8, 180}, {18, 174}, {105, 213}, {117, 201}, {63, 129}, {102, 216}, {107, 213}, {12, 204}, {120, 184}, {80, 144}, {85, 149}, {115, 179}, {67, 130}, {20, 214}, {69, 135}, {88, 154}, {109, 175}, {103, 164}, {105, 170}, {7, 194}, {122, 191}, {65, 132}, {27, 222}, {74, 140}, {127, 185}, {17, 217}, {91, 146}, {121, 176}, {111, 166}, {113, 184}, {86, 156}, {97, 171}, {12, 199}, {2, 206}, {28, 209}, {45, 224}, {84, 153}, {3, 205}, {47, 224}, {76, 131}, {82, 157}, {10, 218}, {71, 151}, {28, 204}, {15, 223}, {122, 171}, {22, 196}, {7, 211}, {118, 163}, {27, 195}, {22, 207}, {25, 192}, {81, 136}, {75, 144}, {78, 149}, {86, 141}, {97, 186}, {110, 179}, {127, 161}, {87, 136}, {116, 171}, {72, 168}, {57, 216}, {121, 152}, {80, 177}, {117, 151}, {52, 215}, {126, 157}, {62, 221}, {73, 172}, {123, 158}, {77, 168}, {108, 137}, {92, 186}, {112, 150}, {32, 200}, {72, 160}, {37, 205}, {102, 142}, {119, 159}, {60, 213}, {125, 148}, {92, 181}, {40, 197}, {90, 183}, {100, 137}, {47, 193}, {107, 133}, {53, 218}, {83, 188}, {17, 225}, {107, 155}, {37, 212}, {120, 137}, {35, 209}, {52, 198}, {40, 219}, {77, 185}, {68, 177}, {112, 133}, {65, 183}, {33, 214}, {127, 136}, {125, 138}, {57, 206}, {90, 173}, {96, 151}, {97, 150}, {106, 157}, {60, 197}, {125, 132}, {85, 172}, {48, 202}, {91, 161}, {32, 220}, {55, 202}, {124, 129}, {90, 167}, {98, 159}, {115, 142}, {67, 189}, {48, 207}, {73, 182}, {108, 147} }>;

(II) A more general form is to represent the graph as the orbit of {105, 107} under the group generated by the following permutations:

a: (2, 3)(4, 5)(6, 16)(7, 17)(8, 18)(9, 19)(10, 20)(11, 21)(12, 22)(13, 23)(14, 24)(15, 25)(26, 46)(27, 47)(28, 48)(29, 49)(30, 50)(31, 51)(32, 52)(33, 53)(34, 54)(35, 55)(36, 56)(37, 57)(38, 58)(39, 59)(40, 60)(41, 61)(42, 62)(43, 63)(44, 64)(45, 65)(66, 101)(67, 103)(68, 102)(69, 105)(70, 104)(71, 106)(72, 107)(73, 108)(74, 109)(75, 110)(76, 111)(77, 112)(78, 113)(79, 114)(80, 115)(81, 116)(82, 117)(83, 118)(84, 119)(85, 120)(86, 121)(87, 122)(88, 123)(89, 124)(90, 125)(91, 92)(93, 94)(96, 126)(97, 127)(98, 128)(99, 129)(100, 130)(131, 166)(132, 167)(133, 168)(134, 169)(135, 170)(136, 171)(137, 172)(138, 173)(139, 174)(140, 175)(141, 176)(142, 177)(143, 178)(144, 179)(145, 180)(146, 181)(147, 182)(148, 183)(149, 184)(150, 185)(151, 157)(152, 156)(153, 159)(154, 158)(155, 160)(161, 186)(162, 187)(163, 188)(164, 189)(165, 190)(191, 221)(192, 223)(193, 222)(194, 225)(195, 224)(196, 199)(198, 200)(201, 210)(202, 209)(203, 208)(204, 207)(205, 206)(211, 217)(212, 216)(213, 219)(214, 218)(215, 220)
b: (1, 6, 11)(2, 7, 12)(3, 8, 13)(4, 9, 14)(5, 10, 15)(16, 26, 31)(17, 27, 32)(18, 28, 33)(19, 29, 34)(20, 30, 35)(21, 36, 41)(22, 37, 42)(23, 38, 43)(24, 39, 44)(25, 40, 45)(46, 66, 71)(47, 67, 72)(48, 68, 73)(49, 69, 74)(50, 70, 75)(51, 76, 81)(52, 77, 82)(53, 78, 83)(54, 79, 84)(55, 80, 85)(56, 86, 91)(57, 87, 92)(58, 88, 93)(59, 89, 94)(60, 90, 95)(61, 96, 101)(62, 97, 102)(63, 98, 103)(64, 99, 104)(65, 100, 105)(106, 131, 136)(107, 132, 137)(108, 133, 138)(109, 134, 139)(110, 135, 140)(111, 141, 146)(112, 142, 147)(113, 143, 148)(114, 144, 149)(115, 145, 150)(116, 151, 121)(117, 152, 122)(118, 153, 123)(119, 154, 124)(120, 155, 125)(126, 156, 161)(127, 157, 162)(128, 158, 163)(129, 159, 164)(130, 160, 165)(166, 191, 196)(167, 192, 197)(168, 193, 198)(169, 194, 199)(170, 195, 200)(171, 201, 176)(172, 202, 177)(173, 203, 178)(174, 204, 179)(175, 205, 180)(181, 206, 211)(182, 207, 212)(183, 208, 213)(184, 209, 214)(185, 210, 215)(186, 216, 221)(187, 217, 222)(188, 218, 223)(189, 219, 224)(190, 220, 225)
c: (1, 2, 4, 5, 3)(6, 110, 163, 124, 205)(7, 109, 165, 122, 203)(8, 108, 161, 125, 204)(9, 107, 164, 121, 201)(10, 106, 162, 123, 202)(11, 179, 118, 129, 134)(12, 180, 120, 127, 132)(13, 177, 116, 130, 135)(14, 178, 119, 126, 131)(15, 176, 117, 128, 133)(16, 206, 89, 188, 75)(17, 208, 87, 190, 74)(18, 207, 90, 186, 73)(19, 210, 86, 189, 72)(20, 209, 88, 187, 71)(21, 169, 99, 83, 144)(22, 167, 97, 85, 145)(23, 170, 100, 81, 142)(24, 166, 96, 84, 143)(25, 168, 98, 82, 141)(26, 49, 219, 93, 212)(27, 47, 217, 95, 211)(28, 50, 220, 91, 214)(29, 46, 216, 94, 213)(30, 48, 218, 92, 215)(31, 33, 35, 34, 32)(36, 38, 40, 39, 37)(41, 115, 79, 63, 200)(42, 113, 77, 65, 199)(43, 114, 80, 61, 198)(44, 111, 76, 64, 197)(45, 112, 78, 62, 196)(51, 52, 54, 55, 53)(56, 57, 59, 60, 58)(66, 67, 69, 70, 68)(101, 102, 104, 105, 103)(136, 138, 140, 139, 137)(146, 148, 150, 149, 147)(151, 153, 155, 154, 152)(156, 158, 160, 159, 157)(171, 172, 174, 175, 173)(181, 182, 184, 185, 183)(191, 192, 194, 195, 193)(221, 222, 224, 225, 223)
d: (2, 140)(3, 175)(4, 158)(5, 154)(6, 21)(7, 145)(8, 170)(9, 84)(10, 98)(11, 16)(12, 206)(13, 75)(14, 89)(15, 188)(17, 180)(18, 135)(19, 119)(20, 128)(22, 205)(23, 110)(24, 124)(25, 163)(26, 61)(27, 80)(28, 198)(29, 114)(30, 43)(31, 56)(32, 185)(33, 224)(35, 67)(36, 51)(37, 146)(38, 104)(40, 192)(41, 46)(42, 217)(44, 93)(45, 214)(47, 115)(48, 200)(49, 79)(50, 63)(52, 150)(53, 195)(55, 103)(57, 181)(58, 70)(60, 223)(62, 211)(64, 94)(65, 218)(68, 222)(69, 184)(71, 126)(72, 120)(73, 133)(74, 179)(76, 92)(77, 220)(78, 213)(81, 121)(82, 201)(83, 164)(85, 107)(86, 116)(87, 176)(88, 129)(90, 132)(91, 111)(95, 197)(96, 106)(97, 162)(99, 123)(100, 202)(102, 193)(105, 149)(108, 168)(109, 144)(112, 215)(113, 219)(117, 210)(118, 189)(122, 141)(125, 167)(127, 187)(130, 209)(131, 186)(134, 207)(136, 152)(137, 160)(138, 173)(142, 165)(143, 203)(147, 194)(151, 157)(155, 172)(156, 171)(161, 166)(169, 204)(177, 190)(178, 208)(182, 225)(196, 212)(199, 216)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 225, 7 ]
225
-1 11 16 6 21
-2 110 179 169 206
-3 144 134 205 75
-4 99 89 118 163
-5 188 124 83 129
-6 11 1 36 26
-7 211 135 194 174
-8 180 50 149 139
-9 104 94 128 153
-10 159 53 119 218
-11 1 6 41 31
-12 199 181 204 140
-13 70 114 109 175
-14 123 59 158 64
-15 154 78 223 164
-16 1 56 46 21
-17 170 225 139 217
-18 145 30 184 174
-19 70 93 159 98
-20 33 214 84 153
-21 1 16 61 51
-22 146 196 207 175
-23 79 104 74 140
-24 44 88 154 39
-25 189 113 158 192
-26 66 36 6 86
-27 222 190 195 109
-28 209 35 204 150
-29 58 103 75 164
-30 123 18 184 54
-31 11 91 71 41
-32 187 220 134 200
-33 179 115 214 20
-34 88 50 63 129
-35 209 79 28 118
-36 26 6 96 76
-37 111 166 212 205
-38 110 49 84 64
-39 44 24 124 93
-40 143 163 197 219
-41 11 101 81 31
-42 180 191 182 141
-43 99 69 135 54
-44 24 58 39 119
-45 167 224 148 128
-46 121 56 101 16
-47 165 224 193 74
-48 55 202 185 207
-49 110 67 189 38
-50 88 34 149 8
-51 92 61 106 21
-52 198 169 215 162
-53 144 80 218 10
-54 99 123 30 43
-55 48 114 202 83
-56 111 46 16 126
-57 216 206 76 131
-58 44 29 75 119
-59 89 14 94 64
-60 188 178 213 197
-61 66 116 51 21
-62 176 221 145 147
-63 34 170 105 129
-64 14 59 38 84
-65 132 183 195 98
-66 26 61 116 86
-67 198 189 49 130
-68 177 210 80 212
-69 135 72 43 219
-70 13 114 93 19
-71 91 96 151 31
-72 69 168 160 219
-73 182 215 172 85
-74 23 47 224 140
-75 144 3 58 29
-76 57 36 96 131
-77 168 127 194 185
-78 223 15 149 85
-79 23 35 104 118
-80 144 177 68 53
-81 101 136 41 87
-82 199 210 157 193
-83 55 188 114 5
-84 38 20 64 153
-85 78 149 73 172
-86 66 156 26 141
-87 221 211 81 136
-88 154 34 24 50
-89 99 4 59 94
-90 167 183 173 218
-91 146 71 161 31
-92 181 51 106 186
-93 124 70 39 19
-94 89 59 104 9
-95 223 192 203 208
-96 36 71 151 76
-97 112 171 150 186
-98 159 19 195 65
-99 89 4 43 54
-100 200 103 137 208
-101 121 46 81 41
-102 201 115 216 142
-103 100 200 29 164
-104 23 79 94 9
-105 213 170 63 107
-106 157 92 126 51
-107 133 155 213 105
-108 220 147 137 120
-109 13 27 195 175
-110 2 179 38 49
-111 56 166 37 126
-112 133 225 150 97
-113 25 192 184 120
-114 55 13 70 83
-115 33 102 179 142
-116 66 122 61 171
-117 222 201 151 196
-118 35 79 4 163
-119 44 58 159 10
-120 113 137 184 108
-121 176 46 101 152
-122 191 116 171 217
-123 14 158 30 54
-124 5 93 39 129
-125 132 148 214 138
-126 56 111 157 106
-127 77 136 161 185
-128 45 224 9 153
-129 34 124 5 63
-130 198 67 203 172
-131 57 156 162 76
-132 125 138 183 65
-133 155 112 225 107
-134 200 3 205 32
-135 69 7 174 43
-136 81 127 161 87
-137 100 108 120 208
-138 132 190 125 142
-139 180 170 17 8
-140 12 23 204 74
-141 156 191 42 86
-142 102 190 115 138
-143 209 155 40 197
-144 3 80 53 75
-145 147 18 62 174
-146 22 91 161 196
-147 220 145 62 108
-148 45 167 125 214
-149 78 50 8 85
-150 112 28 204 97
-151 201 71 117 96
-152 121 176 187 166
-153 84 128 9 20
-154 88 24 15 164
-155 143 209 133 107
-156 162 86 141 131
-157 210 82 126 106
-158 123 189 14 25
-159 19 119 10 98
-160 178 168 202 72
-161 91 146 136 127
-162 156 215 52 131
-163 4 40 118 219
-164 154 15 103 29
-165 177 47 193 173
-166 187 111 37 152
-167 45 90 148 173
-168 77 72 160 194
-169 198 2 52 206
-170 17 105 139 63
-171 122 116 97 186
-172 203 73 85 130
-173 165 177 90 167
-174 145 135 7 18
-175 22 13 207 109
-176 121 221 62 152
-177 165 68 80 173
-178 202 60 160 197
-179 33 110 2 115
-180 182 139 8 42
-181 12 199 92 186
-182 180 215 73 42
-183 132 90 218 65
-184 113 18 30 120
-185 77 48 127 207
-186 92 181 171 97
-187 220 166 152 32
-188 213 5 60 83
-189 67 25 158 49
-190 222 27 138 142
-191 122 217 42 141
-192 25 113 203 95
-193 165 199 47 82
-194 77 211 168 7
-195 27 65 98 109
-196 22 222 146 117
-197 143 178 60 40
-198 67 169 52 130
-199 12 82 181 193
-200 100 134 103 32
-201 102 117 216 151
-202 55 178 48 160
-203 192 95 172 130
-204 12 28 150 140
-205 134 3 212 37
-206 2 57 169 216
-207 22 48 185 175
-208 100 223 137 95
-209 143 155 35 28
-210 68 157 212 82
-211 221 7 194 87
-212 210 68 37 205
-213 188 60 105 107
-214 33 125 148 20
-215 182 73 52 162
-216 57 102 201 206
-217 122 191 225 17
-218 90 183 53 10
-219 69 72 40 163
-220 187 147 108 32
-221 176 211 62 87
-222 190 27 117 196
-223 78 15 95 208
-224 45 47 128 74
-225 133 112 17 217
0

**************