C4graphGraph forms for C4 [ 226, 1 ] = W(113,2)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 226, 1 ] = W(113,2).

(I) Following is a form readable by MAGMA:

g:=Graph<226|{ {2, 3}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155}, {152, 153}, {150, 151}, {148, 149}, {146, 147}, {144, 145}, {142, 143}, {140, 141}, {138, 139}, {136, 137}, {134, 135}, {132, 133}, {130, 131}, {128, 129}, {126, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {52, 53}, {50, 51}, {48, 49}, {46, 47}, {44, 45}, {42, 43}, {40, 41}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {68, 69}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81}, {82, 83}, {84, 85}, {86, 87}, {88, 89}, {90, 91}, {92, 93}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {1, 2}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {157, 158}, {153, 154}, {149, 150}, {145, 146}, {141, 142}, {137, 138}, {133, 134}, {129, 130}, {125, 126}, {121, 122}, {117, 118}, {113, 114}, {65, 66}, {61, 62}, {57, 58}, {53, 54}, {49, 50}, {45, 46}, {41, 42}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {69, 70}, {73, 74}, {77, 78}, {81, 82}, {85, 86}, {89, 90}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {3, 4}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {155, 156}, {147, 148}, {139, 140}, {131, 132}, {123, 124}, {115, 116}, {59, 60}, {51, 52}, {43, 44}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {67, 68}, {75, 76}, {83, 84}, {91, 92}, {99, 100}, {107, 108}, {7, 8}, {215, 216}, {199, 200}, {183, 184}, {167, 168}, {151, 152}, {135, 136}, {119, 120}, {55, 56}, {23, 24}, {39, 40}, {71, 72}, {87, 88}, {103, 104}, {15, 16}, {207, 208}, {175, 176}, {143, 144}, {47, 48}, {79, 80}, {111, 112}, {31, 32}, {223, 224}, {159, 160}, {95, 96}, {1, 113}, {2, 114}, {3, 115}, {4, 116}, {5, 117}, {6, 118}, {7, 119}, {8, 120}, {9, 121}, {10, 122}, {11, 123}, {12, 124}, {13, 125}, {14, 126}, {15, 127}, {1, 115}, {4, 118}, {5, 119}, {8, 122}, {9, 123}, {12, 126}, {13, 127}, {2, 116}, {3, 117}, {10, 124}, {11, 125}, {6, 120}, {7, 121}, {63, 64}, {191, 192}, {14, 128}, {111, 225}, {63, 177}, {62, 176}, {47, 161}, {46, 160}, {15, 129}, {30, 144}, {31, 145}, {78, 192}, {79, 193}, {94, 208}, {95, 209}, {110, 224}, {16, 128}, {114, 226}, {113, 225}, {112, 224}, {63, 175}, {62, 174}, {61, 173}, {60, 172}, {59, 171}, {58, 170}, {57, 169}, {56, 168}, {55, 167}, {54, 166}, {53, 165}, {52, 164}, {51, 163}, {50, 162}, {49, 161}, {48, 160}, {17, 129}, {18, 130}, {19, 131}, {20, 132}, {21, 133}, {22, 134}, {23, 135}, {24, 136}, {25, 137}, {26, 138}, {27, 139}, {28, 140}, {29, 141}, {30, 142}, {31, 143}, {80, 192}, {81, 193}, {82, 194}, {83, 195}, {84, 196}, {85, 197}, {86, 198}, {87, 199}, {88, 200}, {89, 201}, {90, 202}, {91, 203}, {92, 204}, {93, 205}, {94, 206}, {95, 207}, {16, 130}, {112, 226}, {61, 175}, {60, 174}, {57, 171}, {56, 170}, {53, 167}, {52, 166}, {49, 163}, {48, 162}, {17, 131}, {20, 134}, {21, 135}, {24, 138}, {25, 139}, {28, 142}, {29, 143}, {80, 194}, {81, 195}, {84, 198}, {85, 199}, {88, 202}, {89, 203}, {92, 206}, {93, 207}, {18, 132}, {59, 173}, {58, 172}, {51, 165}, {50, 164}, {19, 133}, {26, 140}, {27, 141}, {82, 196}, {83, 197}, {90, 204}, {91, 205}, {22, 136}, {55, 169}, {54, 168}, {23, 137}, {86, 200}, {87, 201}, {32, 144}, {47, 159}, {46, 158}, {45, 157}, {44, 156}, {43, 155}, {42, 154}, {41, 153}, {40, 152}, {33, 145}, {34, 146}, {35, 147}, {36, 148}, {37, 149}, {38, 150}, {39, 151}, {96, 208}, {97, 209}, {98, 210}, {99, 211}, {100, 212}, {101, 213}, {102, 214}, {103, 215}, {104, 216}, {105, 217}, {106, 218}, {107, 219}, {108, 220}, {109, 221}, {110, 222}, {111, 223}, {32, 146}, {45, 159}, {44, 158}, {41, 155}, {40, 154}, {33, 147}, {36, 150}, {37, 151}, {96, 210}, {97, 211}, {100, 214}, {101, 215}, {104, 218}, {105, 219}, {108, 222}, {109, 223}, {34, 148}, {43, 157}, {42, 156}, {35, 149}, {98, 212}, {99, 213}, {106, 220}, {107, 221}, {38, 152}, {39, 153}, {102, 216}, {103, 217}, {1, 226}, {64, 176}, {66, 178}, {65, 177}, {67, 179}, {68, 180}, {69, 181}, {70, 182}, {71, 183}, {72, 184}, {73, 185}, {74, 186}, {75, 187}, {76, 188}, {77, 189}, {78, 190}, {79, 191}, {64, 178}, {65, 179}, {68, 182}, {69, 183}, {72, 186}, {73, 187}, {76, 190}, {77, 191}, {66, 180}, {67, 181}, {74, 188}, {75, 189}, {70, 184}, {71, 185}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (40, 153)
b: (86, 199)
c: (8, 121)
d: (46, 159)
e: (88, 201)
f: (23, 136)
g: (85, 198)
h: (21, 134)
m: (87, 200)
n1: (59, 172)
a1: (26, 139)
b1: (58, 171)
c1: (28, 141)
d1: (32, 145)
e1: (100, 213)
f1: (69, 182)
g1: (49, 162)
h1: (64, 177)
m1: (62, 175)
n2: (82, 195)
a2: (5, 118)
b2: (103, 216)
c2: (37, 150)
d2: (76, 189)
e2: (79, 192)
f2: (18, 131)
g2: (53, 166)
h2: (78, 191)
m2: (66, 179)
n3: (42, 155)
a3: (60, 173)
b3: (50, 163)
c3: (99, 212)
d3: (33, 146)
e3: (55, 168)
f3: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113)(114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226)
g3: (48, 161)
h3: (13, 126)
m3: (107, 220)
n4: (41, 154)
a4: (22, 135)
b4: (63, 176)
c4: (61, 174)
d4: (20, 133)
e4: (98, 211)
f4: (19, 132)
g4: (81, 194)
h4: (38, 151)
m4: (96, 209)
n5: (111, 224)
a5: (45, 158)
b5: (10, 123)
c5: (14, 127)
d5: (70, 183)
e5: (97, 210)
f5: (35, 148)
g5: (2, 115)
h5: (110, 223)
m5: (11, 124)
n6: (109, 222)
a6: (47, 160)
b6: (95, 208)
c6: (29, 142)
d6: (71, 184)
e6: (9, 122)
f6: (7, 120)
g6: (112, 225)
h6: (4, 117)
m6: (106, 219)
n7: (73, 186)
a7: (84, 197)
b7: (3, 116)
c7: (54, 167)
d7: (89, 202)
e7: (27, 140)
f7: (90, 203)
g7: (92, 205)
h7: (34, 147)
m7: (16, 129)
n8: (102, 215)
a8: (25, 138)
b8: (91, 204)
c8: (6, 119)
d8: (80, 193)
e8: (67, 180)
f8: (68, 181)
g8: (2, 113)(3, 112)(4, 111)(5, 110)(6, 109)(7, 108)(8, 107)(9, 106)(10, 105)(11, 104)(12, 103)(13, 102)(14, 101)(15, 100)(16, 99)(17, 98)(18, 97)(19, 96)(20, 95)(21, 94)(22, 93)(23, 92)(24, 91)(25, 90)(26, 89)(27, 88)(28, 87)(29, 86)(30, 85)(31, 84)(32, 83)(33, 82)(34, 81)(35, 80)(36, 79)(37, 78)(38, 77)(39, 76)(40, 75)(41, 74)(42, 73)(43, 72)(44, 71)(45, 70)(46, 69)(47, 68)(48, 67)(49, 66)(50, 65)(51, 64)(52, 63)(53, 62)(54, 61)(55, 60)(56, 59)(57, 58)(115, 226)(116, 225)(117, 224)(118, 223)(119, 222)(120, 221)(121, 220)(122, 219)(123, 218)(124, 217)(125, 216)(126, 215)(127, 214)(128, 213)(129, 212)(130, 211)(131, 210)(132, 209)(133, 208)(134, 207)(135, 206)(136, 205)(137, 204)(138, 203)(139, 202)(140, 201)(141, 200)(142, 199)(143, 198)(144, 197)(145, 196)(146, 195)(147, 194)(148, 193)(149, 192)(150, 191)(151, 190)(152, 189)(153, 188)(154, 187)(155, 186)(156, 185)(157, 184)(158, 183)(159, 182)(160, 181)(161, 180)(162, 179)(163, 178)(164, 177)(165, 176)(166, 175)(167, 174)(168, 173)(169, 172)(170, 171)
h8: (15, 128)
m8: (39, 152)
n9: (101, 214)
a9: (105, 218)
b9: (43, 156)
c9: (24, 137)
d9: (17, 130)
e9: (83, 196)
f9: (72, 185)
g9: (94, 207)
h9: (65, 178)
m9: (51, 164)
n10: (113, 226)
a10: (77, 190)
b10: (44, 157)
c10: (36, 149)
d10: (30, 143)
e10: (104, 217)
f10: (57, 170)
g10: (74, 187)
h10: (52, 165)
m10: (75, 188)
n11: (93, 206)
a11: (12, 125)
b11: (31, 144)
c11: (108, 221)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 226, 1 ]
226
-1 2 113 115 226
-2 1 3 114 116
-3 2 4 115 117
-4 3 5 116 118
-5 4 6 117 119
-6 5 7 118 120
-7 121 6 8 119
-8 122 7 9 120
-9 121 123 8 10
-10 11 122 124 9
-11 12 123 125 10
-12 11 13 124 126
-13 12 14 125 127
-14 13 15 126 128
-15 14 16 127 129
-16 15 17 128 130
-17 16 18 129 131
-18 132 17 19 130
-19 133 18 20 131
-20 132 134 19 21
-21 22 133 135 20
-22 23 134 136 21
-23 22 24 135 137
-24 23 25 136 138
-25 24 26 137 139
-26 25 27 138 140
-27 26 28 139 141
-28 27 29 140 142
-29 143 28 30 141
-30 144 29 31 142
-31 143 145 30 32
-32 33 144 146 31
-33 34 145 147 32
-34 33 35 146 148
-35 34 36 147 149
-36 35 37 148 150
-37 36 38 149 151
-38 37 39 150 152
-39 38 40 151 153
-40 154 39 41 152
-41 155 40 42 153
-42 154 156 41 43
-43 44 155 157 42
-44 45 156 158 43
-45 44 46 157 159
-46 45 47 158 160
-47 46 48 159 161
-48 47 49 160 162
-49 48 50 161 163
-50 49 51 162 164
-51 165 50 52 163
-52 166 51 53 164
-53 165 167 52 54
-54 55 166 168 53
-55 56 167 169 54
-56 55 57 168 170
-57 56 58 169 171
-58 57 59 170 172
-59 58 60 171 173
-60 59 61 172 174
-61 60 62 173 175
-62 176 61 63 174
-63 177 62 64 175
-64 176 178 63 65
-65 66 177 179 64
-66 67 178 180 65
-67 66 68 179 181
-68 67 69 180 182
-69 68 70 181 183
-70 69 71 182 184
-71 70 72 183 185
-72 71 73 184 186
-73 187 72 74 185
-74 188 73 75 186
-75 187 189 74 76
-76 77 188 190 75
-77 78 189 191 76
-78 77 79 190 192
-79 78 80 191 193
-80 79 81 192 194
-81 80 82 193 195
-82 81 83 194 196
-83 82 84 195 197
-84 198 83 85 196
-85 199 84 86 197
-86 198 200 85 87
-87 88 199 201 86
-88 89 200 202 87
-89 88 90 201 203
-90 89 91 202 204
-91 90 92 203 205
-92 91 93 204 206
-93 92 94 205 207
-94 93 95 206 208
-95 209 94 96 207
-96 210 95 97 208
-97 209 211 96 98
-98 99 210 212 97
-99 100 211 213 98
-100 99 101 212 214
-101 100 102 213 215
-102 101 103 214 216
-103 102 104 215 217
-104 103 105 216 218
-105 104 106 217 219
-106 220 105 107 218
-107 221 106 108 219
-108 220 222 107 109
-109 110 221 223 108
-110 111 222 224 109
-111 110 112 223 225
-112 111 113 224 226
-113 1 112 114 225
-114 2 113 115 226
-115 1 3 114 116
-116 2 4 115 117
-117 3 5 116 118
-118 4 6 117 119
-119 5 7 118 120
-120 121 6 8 119
-121 122 7 9 120
-122 121 123 8 10
-123 11 122 124 9
-124 12 123 125 10
-125 11 13 124 126
-126 12 14 125 127
-127 13 15 126 128
-128 14 16 127 129
-129 15 17 128 130
-130 16 18 129 131
-131 132 17 19 130
-132 133 18 20 131
-133 132 134 19 21
-134 22 133 135 20
-135 23 134 136 21
-136 22 24 135 137
-137 23 25 136 138
-138 24 26 137 139
-139 25 27 138 140
-140 26 28 139 141
-141 27 29 140 142
-142 143 28 30 141
-143 144 29 31 142
-144 143 145 30 32
-145 33 144 146 31
-146 34 145 147 32
-147 33 35 146 148
-148 34 36 147 149
-149 35 37 148 150
-150 36 38 149 151
-151 37 39 150 152
-152 38 40 151 153
-153 154 39 41 152
-154 155 40 42 153
-155 154 156 41 43
-156 44 155 157 42
-157 45 156 158 43
-158 44 46 157 159
-159 45 47 158 160
-160 46 48 159 161
-161 47 49 160 162
-162 48 50 161 163
-163 49 51 162 164
-164 165 50 52 163
-165 166 51 53 164
-166 165 167 52 54
-167 55 166 168 53
-168 56 167 169 54
-169 55 57 168 170
-170 56 58 169 171
-171 57 59 170 172
-172 58 60 171 173
-173 59 61 172 174
-174 60 62 173 175
-175 176 61 63 174
-176 177 62 64 175
-177 176 178 63 65
-178 66 177 179 64
-179 67 178 180 65
-180 66 68 179 181
-181 67 69 180 182
-182 68 70 181 183
-183 69 71 182 184
-184 70 72 183 185
-185 71 73 184 186
-186 187 72 74 185
-187 188 73 75 186
-188 187 189 74 76
-189 77 188 190 75
-190 78 189 191 76
-191 77 79 190 192
-192 78 80 191 193
-193 79 81 192 194
-194 80 82 193 195
-195 81 83 194 196
-196 82 84 195 197
-197 198 83 85 196
-198 199 84 86 197
-199 198 200 85 87
-200 88 199 201 86
-201 89 200 202 87
-202 88 90 201 203
-203 89 91 202 204
-204 90 92 203 205
-205 91 93 204 206
-206 92 94 205 207
-207 93 95 206 208
-208 209 94 96 207
-209 210 95 97 208
-210 209 211 96 98
-211 99 210 212 97
-212 100 211 213 98
-213 99 101 212 214
-214 100 102 213 215
-215 101 103 214 216
-216 102 104 215 217
-217 103 105 216 218
-218 104 106 217 219
-219 220 105 107 218
-220 221 106 108 219
-221 220 222 107 109
-222 110 221 223 108
-223 111 222 224 109
-224 110 112 223 225
-225 111 113 224 226
-226 1 112 114 225
0

**************