C4graphGraph forms for C4 [ 226, 2 ] = C_226(1,15)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 226, 2 ] = C_226(1,15).

(I) Following is a form readable by MAGMA:

g:=Graph<226|{ {2, 3}, {224, 225}, {222, 223}, {220, 221}, {218, 219}, {216, 217}, {214, 215}, {212, 213}, {210, 211}, {208, 209}, {206, 207}, {204, 205}, {202, 203}, {200, 201}, {198, 199}, {196, 197}, {194, 195}, {192, 193}, {190, 191}, {188, 189}, {186, 187}, {184, 185}, {182, 183}, {180, 181}, {178, 179}, {176, 177}, {174, 175}, {172, 173}, {170, 171}, {168, 169}, {166, 167}, {164, 165}, {162, 163}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {66, 67}, {64, 65}, {62, 63}, {60, 61}, {58, 59}, {56, 57}, {54, 55}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {94, 95}, {96, 97}, {98, 99}, {100, 101}, {102, 103}, {104, 105}, {106, 107}, {108, 109}, {110, 111}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {1, 2}, {225, 226}, {221, 222}, {217, 218}, {213, 214}, {209, 210}, {205, 206}, {201, 202}, {197, 198}, {193, 194}, {189, 190}, {185, 186}, {181, 182}, {177, 178}, {173, 174}, {169, 170}, {165, 166}, {161, 162}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {65, 66}, {61, 62}, {57, 58}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {93, 94}, {97, 98}, {101, 102}, {105, 106}, {109, 110}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {3, 4}, {219, 220}, {211, 212}, {203, 204}, {195, 196}, {187, 188}, {179, 180}, {171, 172}, {163, 164}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {59, 60}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {99, 100}, {107, 108}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {7, 8}, {215, 216}, {208, 223}, {199, 200}, {192, 207}, {183, 184}, {176, 191}, {167, 168}, {87, 88}, {80, 95}, {71, 72}, {64, 79}, {55, 56}, {16, 31}, {23, 24}, {32, 47}, {39, 40}, {48, 63}, {96, 111}, {103, 104}, {112, 127}, {119, 120}, {128, 143}, {135, 136}, {144, 159}, {151, 152}, {160, 175}, {1, 16}, {207, 222}, {205, 220}, {203, 218}, {201, 216}, {199, 214}, {197, 212}, {195, 210}, {193, 208}, {175, 190}, {173, 188}, {171, 186}, {169, 184}, {167, 182}, {165, 180}, {163, 178}, {161, 176}, {79, 94}, {77, 92}, {75, 90}, {73, 88}, {71, 86}, {69, 84}, {67, 82}, {65, 80}, {3, 18}, {5, 20}, {7, 22}, {9, 24}, {11, 26}, {13, 28}, {15, 30}, {33, 48}, {35, 50}, {37, 52}, {39, 54}, {41, 56}, {43, 58}, {45, 60}, {47, 62}, {97, 112}, {99, 114}, {101, 116}, {103, 118}, {105, 120}, {107, 122}, {109, 124}, {111, 126}, {129, 144}, {131, 146}, {133, 148}, {135, 150}, {137, 152}, {139, 154}, {141, 156}, {143, 158}, {2, 17}, {206, 221}, {202, 217}, {198, 213}, {194, 209}, {174, 189}, {170, 185}, {166, 181}, {162, 177}, {78, 93}, {74, 89}, {70, 85}, {66, 81}, {6, 21}, {10, 25}, {14, 29}, {34, 49}, {38, 53}, {42, 57}, {46, 61}, {98, 113}, {102, 117}, {106, 121}, {110, 125}, {130, 145}, {134, 149}, {138, 153}, {142, 157}, {4, 19}, {204, 219}, {196, 211}, {172, 187}, {164, 179}, {76, 91}, {68, 83}, {12, 27}, {36, 51}, {44, 59}, {100, 115}, {108, 123}, {132, 147}, {140, 155}, {8, 23}, {207, 208}, {200, 215}, {175, 176}, {168, 183}, {79, 80}, {72, 87}, {15, 16}, {40, 55}, {47, 48}, {104, 119}, {111, 112}, {136, 151}, {143, 144}, {17, 32}, {211, 226}, {209, 224}, {91, 106}, {89, 104}, {87, 102}, {85, 100}, {83, 98}, {81, 96}, {19, 34}, {21, 36}, {23, 38}, {25, 40}, {27, 42}, {29, 44}, {31, 46}, {93, 108}, {95, 110}, {145, 160}, {147, 162}, {149, 164}, {151, 166}, {153, 168}, {155, 170}, {157, 172}, {159, 174}, {18, 33}, {210, 225}, {90, 105}, {86, 101}, {82, 97}, {22, 37}, {26, 41}, {30, 45}, {94, 109}, {146, 161}, {150, 165}, {154, 169}, {158, 173}, {20, 35}, {84, 99}, {28, 43}, {92, 107}, {148, 163}, {156, 171}, {24, 39}, {223, 224}, {88, 103}, {31, 32}, {95, 96}, {152, 167}, {159, 160}, {49, 64}, {191, 206}, {189, 204}, {187, 202}, {185, 200}, {183, 198}, {181, 196}, {179, 194}, {177, 192}, {63, 78}, {61, 76}, {59, 74}, {57, 72}, {55, 70}, {53, 68}, {51, 66}, {50, 65}, {190, 205}, {186, 201}, {182, 197}, {178, 193}, {62, 77}, {58, 73}, {54, 69}, {52, 67}, {188, 203}, {180, 195}, {60, 75}, {56, 71}, {191, 192}, {184, 199}, {63, 64}, {4, 215}, {8, 219}, {12, 223}, {1, 212}, {3, 214}, {9, 220}, {11, 222}, {2, 213}, {10, 221}, {5, 216}, {7, 218}, {6, 217}, {1, 226}, {13, 224}, {15, 226}, {14, 225}, {113, 128}, {115, 130}, {117, 132}, {119, 134}, {121, 136}, {123, 138}, {125, 140}, {127, 142}, {114, 129}, {118, 133}, {122, 137}, {126, 141}, {116, 131}, {124, 139}, {120, 135}, {127, 128} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 212, 226, 16)(3, 197, 225, 31)(4, 182, 224, 46)(5, 167, 223, 61)(6, 152, 222, 76)(7, 137, 221, 91)(8, 122, 220, 106)(9, 107, 219, 121)(10, 92, 218, 136)(11, 77, 217, 151)(12, 62, 216, 166)(13, 47, 215, 181)(14, 32, 214, 196)(15, 17, 213, 211)(18, 198, 210, 30)(19, 183, 209, 45)(20, 168, 208, 60)(21, 153, 207, 75)(22, 138, 206, 90)(23, 123, 205, 105)(24, 108, 204, 120)(25, 93, 203, 135)(26, 78, 202, 150)(27, 63, 201, 165)(28, 48, 200, 180)(29, 33, 199, 195)(34, 184, 194, 44)(35, 169, 193, 59)(36, 154, 192, 74)(37, 139, 191, 89)(38, 124, 190, 104)(39, 109, 189, 119)(40, 94, 188, 134)(41, 79, 187, 149)(42, 64, 186, 164)(43, 49, 185, 179)(50, 170, 178, 58)(51, 155, 177, 73)(52, 140, 176, 88)(53, 125, 175, 103)(54, 110, 174, 118)(55, 95, 173, 133)(56, 80, 172, 148)(57, 65, 171, 163)(66, 156, 162, 72)(67, 141, 161, 87)(68, 126, 160, 102)(69, 111, 159, 117)(70, 96, 158, 132)(71, 81, 157, 147)(82, 142, 146, 86)(83, 127, 145, 101)(84, 112, 144, 116)(85, 97, 143, 131)(98, 128, 130, 100)(99, 113, 129, 115)
b: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 226, 2 ]
226
-1 2 212 16 226
-2 1 3 213 17
-3 2 4 214 18
-4 3 5 215 19
-5 4 6 216 20
-6 5 7 217 21
-7 22 6 8 218
-8 23 7 9 219
-9 220 24 8 10
-10 11 221 25 9
-11 12 222 26 10
-12 11 13 223 27
-13 12 14 224 28
-14 13 15 225 29
-15 14 16 226 30
-16 1 15 17 31
-17 2 16 18 32
-18 33 3 17 19
-19 34 4 18 20
-20 35 5 19 21
-21 22 36 6 20
-22 23 37 7 21
-23 22 24 38 8
-24 23 25 39 9
-25 24 26 40 10
-26 11 25 27 41
-27 12 26 28 42
-28 13 27 29 43
-29 44 14 28 30
-30 45 15 29 31
-31 46 16 30 32
-32 33 47 17 31
-33 34 48 18 32
-34 33 35 49 19
-35 34 36 50 20
-36 35 37 51 21
-37 22 36 38 52
-38 23 37 39 53
-39 24 38 40 54
-40 55 25 39 41
-41 56 26 40 42
-42 57 27 41 43
-43 44 58 28 42
-44 45 59 29 43
-45 44 46 60 30
-46 45 47 61 31
-47 46 48 62 32
-48 33 47 49 63
-49 34 48 50 64
-50 35 49 51 65
-51 66 36 50 52
-52 67 37 51 53
-53 68 38 52 54
-54 55 69 39 53
-55 56 70 40 54
-56 55 57 71 41
-57 56 58 72 42
-58 57 59 73 43
-59 44 58 60 74
-60 45 59 61 75
-61 46 60 62 76
-62 77 47 61 63
-63 78 48 62 64
-64 79 49 63 65
-65 66 80 50 64
-66 67 81 51 65
-67 66 68 82 52
-68 67 69 83 53
-69 68 70 84 54
-70 55 69 71 85
-71 56 70 72 86
-72 57 71 73 87
-73 88 58 72 74
-74 89 59 73 75
-75 90 60 74 76
-76 77 91 61 75
-77 78 92 62 76
-78 77 79 93 63
-79 78 80 94 64
-80 79 81 95 65
-81 66 80 82 96
-82 67 81 83 97
-83 68 82 84 98
-84 99 69 83 85
-85 100 70 84 86
-86 101 71 85 87
-87 88 102 72 86
-88 89 103 73 87
-89 88 90 104 74
-90 89 91 105 75
-91 90 92 106 76
-92 77 91 93 107
-93 78 92 94 108
-94 79 93 95 109
-95 110 80 94 96
-96 111 81 95 97
-97 112 82 96 98
-98 99 113 83 97
-99 100 114 84 98
-100 99 101 115 85
-101 100 102 116 86
-102 101 103 117 87
-103 88 102 104 118
-104 89 103 105 119
-105 90 104 106 120
-106 121 91 105 107
-107 122 92 106 108
-108 123 93 107 109
-109 110 124 94 108
-110 111 125 95 109
-111 110 112 126 96
-112 111 113 127 97
-113 112 114 128 98
-114 99 113 115 129
-115 100 114 116 130
-116 101 115 117 131
-117 132 102 116 118
-118 133 103 117 119
-119 134 104 118 120
-120 121 135 105 119
-121 122 136 106 120
-122 121 123 137 107
-123 122 124 138 108
-124 123 125 139 109
-125 110 124 126 140
-126 111 125 127 141
-127 112 126 128 142
-128 143 113 127 129
-129 144 114 128 130
-130 145 115 129 131
-131 132 146 116 130
-132 133 147 117 131
-133 132 134 148 118
-134 133 135 149 119
-135 134 136 150 120
-136 121 135 137 151
-137 122 136 138 152
-138 123 137 139 153
-139 154 124 138 140
-140 155 125 139 141
-141 156 126 140 142
-142 143 157 127 141
-143 144 158 128 142
-144 143 145 159 129
-145 144 146 160 130
-146 145 147 161 131
-147 132 146 148 162
-148 133 147 149 163
-149 134 148 150 164
-150 165 135 149 151
-151 166 136 150 152
-152 167 137 151 153
-153 154 168 138 152
-154 155 169 139 153
-155 154 156 170 140
-156 155 157 171 141
-157 156 158 172 142
-158 143 157 159 173
-159 144 158 160 174
-160 145 159 161 175
-161 176 146 160 162
-162 177 147 161 163
-163 178 148 162 164
-164 165 179 149 163
-165 166 180 150 164
-166 165 167 181 151
-167 166 168 182 152
-168 167 169 183 153
-169 154 168 170 184
-170 155 169 171 185
-171 156 170 172 186
-172 187 157 171 173
-173 188 158 172 174
-174 189 159 173 175
-175 176 190 160 174
-176 177 191 161 175
-177 176 178 192 162
-178 177 179 193 163
-179 178 180 194 164
-180 165 179 181 195
-181 166 180 182 196
-182 167 181 183 197
-183 198 168 182 184
-184 199 169 183 185
-185 200 170 184 186
-186 187 201 171 185
-187 188 202 172 186
-188 187 189 203 173
-189 188 190 204 174
-190 189 191 205 175
-191 176 190 192 206
-192 177 191 193 207
-193 178 192 194 208
-194 209 179 193 195
-195 210 180 194 196
-196 211 181 195 197
-197 198 212 182 196
-198 199 213 183 197
-199 198 200 214 184
-200 199 201 215 185
-201 200 202 216 186
-202 187 201 203 217
-203 188 202 204 218
-204 189 203 205 219
-205 220 190 204 206
-206 221 191 205 207
-207 222 192 206 208
-208 209 223 193 207
-209 210 224 194 208
-210 209 211 225 195
-211 210 212 226 196
-212 1 211 213 197
-213 198 2 212 214
-214 199 3 213 215
-215 200 4 214 216
-216 201 5 215 217
-217 202 6 216 218
-218 203 7 217 219
-219 220 204 8 218
-220 221 205 9 219
-221 220 222 206 10
-222 11 221 223 207
-223 12 222 224 208
-224 209 13 223 225
-225 210 14 224 226
-226 1 211 15 225
0

**************