[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 228, 10 ] =
UG(ATD[228,1]).
(I) Following is a form readable by MAGMA:
g:=Graph<228|{ {46, 47}, {68, 69}, {66, 67}, {68, 70}, {133, 135}, {1, 2}, {141,
142}, {69, 70}, {32, 36}, {2, 7}, {129, 132}, {1, 7}, {201, 207}, {1, 6}, {58,
61}, {212, 220}, {213, 221}, {161, 171}, {3, 8}, {148, 159}, {194, 206}, {4, 9},
{50, 63}, {133, 139}, {167, 169}, {5, 10}, {212, 219}, {105, 121}, {137, 152},
{142, 159}, {141, 159}, {203, 217}, {8, 28}, {11, 31}, {10, 30}, {9, 29}, {2,
23}, {160, 183}, {205, 218}, {139, 147}, {4, 29}, {1, 27}, {128, 154}, {3, 24},
{39, 60}, {5, 30}, {143, 147}, {4, 25}, {140, 145}, {6, 27}, {46, 48}, {3, 28},
{141, 146}, {47, 48}, {5, 26}, {78, 110}, {156, 188}, {139, 170}, {9, 43}, {193,
227}, {130, 161}, {74, 108}, {150, 176}, {146, 180}, {16, 55}, {12, 36}, {18,
58}, {17, 57}, {130, 171}, {132, 173}, {19, 56}, {146, 185}, {80, 123}, {12,
32}, {129, 173}, {15, 35}, {14, 34}, {13, 33}, {204, 225}, {134, 168}, {140,
162}, {19, 60}, {149, 186}, {133, 170}, {92, 108}, {131, 178}, {76, 126}, {72,
123}, {145, 162}, {16, 36}, {141, 185}, {19, 39}, {18, 38}, {17, 37}, {73, 124},
{157, 168}, {64, 118}, {75, 125}, {136, 191}, {216, 224}, {65, 120}, {87, 110},
{153, 163}, {66, 121}, {135, 188}, {20, 40}, {143, 179}, {22, 42}, {21, 41},
{81, 109}, {71, 122}, {11, 53}, {154, 164}, {85, 106}, {157, 162}, {149, 170},
{33, 97}, {45, 109}, {44, 108}, {43, 107}, {34, 98}, {37, 100}, {15, 77}, {42,
104}, {38, 101}, {148, 215}, {52, 112}, {130, 198}, {55, 115}, {54, 114}, {53,
113}, {18, 87}, {145, 212}, {26, 95}, {24, 93}, {16, 86}, {147, 213}, {144,
214}, {131, 197}, {25, 94}, {155, 220}, {36, 99}, {6, 78}, {168, 224}, {159,
215}, {63, 119}, {62, 118}, {61, 117}, {60, 116}, {7, 79}, {28, 85}, {171, 226},
{137, 192}, {42, 96}, {145, 219}, {19, 88}, {138, 193}, {23, 92}, {20, 89},
{175, 226}, {158, 211}, {154, 215}, {30, 83}, {22, 91}, {40, 102}, {158, 208},
{41, 103}, {21, 90}, {155, 212}, {129, 206}, {17, 67}, {25, 75}, {128, 210},
{140, 216}, {24, 77}, {56, 109}, {43, 124}, {128, 215}, {8, 80}, {152, 192},
{38, 127}, {4, 94}, {190, 228}, {187, 225}, {143, 213}, {15, 85}, {14, 84}, {5,
95}, {10, 81}, {191, 228}, {23, 76}, {51, 111}, {143, 211}, {41, 116}, {2, 92},
{189, 227}, {153, 199}, {13, 83}, {12, 82}, {3, 93}, {37, 122}, {149, 202}, {49,
110}, {56, 88}, {179, 211}, {170, 202}, {55, 86}, {9, 107}, {166, 196}, {161,
195}, {31, 125}, {44, 79}, {189, 217}, {27, 126}, {44, 74}, {134, 224}, {181,
210}, {186, 221}, {182, 209}, {184, 208}, {190, 214}, {138, 227}, {11, 96},
{180, 223}, {48, 91}, {13, 97}, {136, 228}, {14, 98}, {58, 87}, {177, 220},
{176, 221}, {35, 77}, {142, 225}, {186, 213}, {177, 222}, {59, 74}, {20, 102},
{21, 103}, {16, 99}, {52, 71}, {29, 105}, {17, 100}, {47, 90}, {28, 106}, {18,
101}, {187, 204}, {178, 197}, {172, 219}, {46, 89}, {11, 113}, {62, 68}, {57,
67}, {26, 97}, {50, 73}, {45, 81}, {22, 104}, {31, 96}, {49, 78}, {76, 204},
{95, 223}, {57, 186}, {72, 203}, {63, 187}, {93, 217}, {38, 160}, {48, 183},
{31, 151}, {94, 214}, {49, 184}, {50, 187}, {87, 222}, {29, 151}, {50, 185},
{66, 201}, {76, 192}, {77, 193}, {78, 194}, {71, 202}, {86, 219}, {111, 225},
{32, 175}, {54, 166}, {55, 167}, {84, 196}, {85, 197}, {33, 176}, {52, 165},
{113, 224}, {34, 177}, {80, 195}, {92, 200}, {53, 163}, {93, 203}, {51, 164},
{83, 196}, {45, 180}, {47, 182}, {41, 178}, {46, 181}, {35, 188}, {44, 179},
{99, 195}, {58, 155}, {119, 214}, {120, 217}, {12, 174}, {70, 228}, {107, 201},
{121, 218}, {124, 223}, {35, 135}, {107, 207}, {108, 200}, {10, 175}, {25, 191},
{69, 227}, {62, 152}, {61, 155}, {14, 169}, {59, 156}, {39, 128}, {101, 194},
{54, 158}, {59, 147}, {40, 129}, {51, 154}, {100, 205}, {113, 216}, {101, 206},
{122, 209}, {53, 153}, {57, 149}, {56, 148}, {106, 198}, {96, 205}, {117, 216},
{97, 207}, {114, 221}, {115, 220}, {20, 164}, {59, 139}, {30, 174}, {21, 165},
{110, 222}, {121, 201}, {122, 202}, {123, 203}, {98, 208}, {116, 198}, {117,
199}, {126, 204}, {105, 218}, {22, 163}, {103, 210}, {27, 173}, {63, 137}, {33,
150}, {52, 131}, {51, 132}, {127, 199}, {104, 209}, {88, 226}, {100, 218}, {118,
200}, {7, 184}, {45, 146}, {32, 226}, {99, 161}, {114, 176}, {115, 177}, {6,
194}, {120, 189}, {102, 160}, {116, 178}, {13, 196}, {65, 136}, {119, 190}, {15,
197}, {64, 138}, {8, 195}, {75, 134}, {94, 144}, {102, 183}, {103, 181}, {126,
173}, {66, 150}, {114, 166}, {115, 167}, {26, 207}, {72, 157}, {67, 150}, {74,
156}, {23, 192}, {123, 172}, {24, 193}, {73, 144}, {64, 156}, {68, 152}, {65,
157}, {104, 182}, {127, 160}, {49, 208}, {111, 142}, {71, 165}, {54, 211}, {40,
206}, {127, 153}, {42, 205}, {106, 130}, {65, 168}, {72, 162}, {125, 151}, {95,
180}, {111, 132}, {89, 181}, {90, 182}, {91, 183}, {124, 144}, {73, 185}, {120,
136}, {84, 166}, {88, 171}, {112, 131}, {37, 209}, {43, 223}, {75, 191}, {39,
210}, {82, 167}, {112, 133}, {62, 200}, {79, 184}, {112, 135}, {69, 189}, {70,
190}, {91, 163}, {109, 148}, {117, 140}, {60, 198}, {61, 199}, {86, 172}, {82,
169}, {125, 134}, {34, 222}, {64, 188}, {79, 179}, {80, 172}, {82, 174}, {98,
158}, {118, 138}, {83, 174}, {84, 169}, {89, 164}, {81, 175}, {105, 151}, {119,
137}, {90, 165} }>;
(II) A more general form is to represent the graph as the orbit of {46, 47}
under the group generated by the following permutations:
a: (2, 6)(3, 11)(4, 16)(7, 27)(8, 31)(9, 36)(10, 26)(12, 43)(13, 45)(14, 50)(15,
22)(17, 60)(18, 62)(19, 67)(20, 59)(21, 71)(23, 78)(24, 53)(25, 86)(28, 96)(29,
99)(30, 95)(32, 107)(33, 109)(34, 63)(35, 91)(37, 116)(38, 118)(39, 57)(40,
74)(41, 122)(42, 85)(44, 129)(46, 133)(47, 112)(48, 135)(49, 76)(51, 143)(52,
90)(54, 142)(55, 94)(56, 150)(58, 68)(61, 69)(64, 160)(65, 162)(66, 88)(70,
155)(72, 168)(73, 169)(75, 172)(77, 163)(79, 173)(80, 125)(81, 97)(82, 124)(83,
180)(84, 185)(87, 152)(89, 139)(92, 194)(93, 113)(98, 187)(100, 198)(101,
200)(102, 156)(103, 202)(104, 197)(105, 161)(106, 205)(108, 206)(110, 192)(111,
211)(114, 159)(115, 214)(117, 189)(119, 177)(120, 140)(121, 171)(123, 134)(126,
184)(127, 138)(128, 186)(130, 218)(131, 182)(132, 179)(136, 145)(137, 222)(141,
166)(144, 167)(146, 196)(147, 164)(148, 176)(149, 210)(151, 195)(153, 193)(154,
213)(158, 225)(170, 181)(174, 223)(175, 207)(178, 209)(183, 188)(190, 220)(191,
219)(199, 227)(201, 226)(203, 224)(204, 208)(212, 228)(215, 221)(216, 217) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 2, 7)(3, 12, 39)(4, 17, 53)(5, 21, 72)(6, 23, 79)(8, 32, 60)(9, 37,
113)(10, 41, 123)(11, 29, 100)(13, 46, 120)(14, 51, 138)(15, 55, 148)(16, 56,
85)(18, 63, 147)(19, 28, 36)(20, 69, 166)(22, 75, 66)(24, 82, 128)(25, 67,
163)(26, 90, 157)(27, 92, 184)(30, 103, 203)(31, 105, 205)(33, 48, 136)(34, 111,
64)(35, 115, 159)(38, 119, 213)(40, 68, 54)(42, 125, 121)(43, 122, 216)(44, 78,
76)(45, 131, 219)(47, 65, 97)(49, 126, 108)(50, 139, 58)(52, 145, 180)(57, 153,
94)(59, 87, 187)(61, 73, 170)(62, 158, 129)(70, 114, 102)(71, 140, 223)(74, 110,
204)(77, 167, 215)(80, 175, 116)(81, 178, 172)(83, 181, 217)(84, 164, 227)(86,
109, 197)(88, 106, 99)(89, 189, 196)(91, 191, 150)(93, 174, 210)(95, 165,
162)(96, 151, 218)(98, 132, 118)(101, 137, 143)(104, 134, 201)(107, 209,
224)(112, 212, 146)(117, 124, 202)(127, 214, 186)(130, 161, 171)(133, 155,
185)(135, 220, 141)(142, 188, 177)(144, 149, 199)(152, 211, 206)(154, 193,
169)(156, 222, 225)(160, 190, 221)(168, 207, 182)(173, 200, 208)(176, 183,
228)(179, 194, 192)(195, 226, 198)
C4[ 228, 10 ]
228
-1 2 27 6 7
-2 1 23 92 7
-3 24 93 28 8
-4 25 94 29 9
-5 26 95 30 10
-6 1 78 27 194
-7 1 2 79 184
-8 3 80 28 195
-9 4 29 107 43
-10 81 5 30 175
-11 113 96 31 53
-12 36 82 174 32
-13 33 83 97 196
-14 34 169 84 98
-15 77 35 85 197
-16 55 99 36 86
-17 67 100 57 37
-18 101 58 38 87
-19 88 56 60 39
-20 89 102 40 164
-21 165 90 103 41
-22 91 104 42 163
-23 2 92 192 76
-24 77 3 93 193
-25 4 191 94 75
-26 5 95 97 207
-27 1 126 6 173
-28 3 106 8 85
-29 4 105 151 9
-30 5 83 174 10
-31 11 125 96 151
-32 12 36 226 175
-33 176 13 150 97
-34 177 222 14 98
-35 77 188 135 15
-36 99 12 16 32
-37 209 100 122 17
-38 101 127 160 18
-39 210 60 128 19
-40 102 129 206 20
-41 178 103 116 21
-42 22 104 205 96
-43 124 223 107 9
-44 79 179 74 108
-45 146 81 180 109
-46 89 47 48 181
-47 46 90 48 182
-48 46 47 91 183
-49 110 78 184 208
-50 187 73 63 185
-51 132 154 111 164
-52 165 112 71 131
-53 11 113 163 153
-54 166 211 114 158
-55 167 16 115 86
-56 88 148 19 109
-57 67 17 149 186
-58 155 61 18 87
-59 156 147 139 74
-60 198 39 116 19
-61 155 199 58 117
-62 68 200 118 152
-63 187 137 50 119
-64 188 156 138 118
-65 157 168 136 120
-66 121 67 201 150
-67 66 57 17 150
-68 69 70 62 152
-69 68 189 70 227
-70 68 69 190 228
-71 165 122 202 52
-72 123 157 203 162
-73 144 124 50 185
-74 44 156 59 108
-75 134 25 125 191
-76 23 126 192 204
-77 24 35 15 193
-78 110 49 6 194
-79 44 179 7 184
-80 123 172 8 195
-81 45 10 109 175
-82 12 167 169 174
-83 13 30 174 196
-84 166 14 169 196
-85 15 28 106 197
-86 55 16 172 219
-87 110 222 58 18
-88 56 171 226 19
-89 46 181 20 164
-90 165 47 182 21
-91 22 48 183 163
-92 23 2 200 108
-93 24 3 203 217
-94 144 25 4 214
-95 223 26 180 5
-96 11 205 31 42
-97 33 13 26 207
-98 34 14 158 208
-99 36 16 161 195
-100 37 17 205 218
-101 38 18 194 206
-102 160 40 183 20
-103 210 181 41 21
-104 22 209 182 42
-105 121 29 151 218
-106 198 28 85 130
-107 201 9 207 43
-108 44 200 92 74
-109 45 56 81 148
-110 78 222 49 87
-111 132 225 51 142
-112 133 135 52 131
-113 11 224 216 53
-114 176 166 221 54
-115 55 220 177 167
-116 198 178 60 41
-117 199 61 216 140
-118 200 138 62 64
-119 190 137 214 63
-120 189 136 217 65
-121 66 201 105 218
-122 209 37 202 71
-123 80 203 72 172
-124 144 223 73 43
-125 134 151 31 75
-126 27 204 173 76
-127 199 38 160 153
-128 154 210 39 215
-129 132 40 173 206
-130 198 171 106 161
-131 112 178 52 197
-132 111 51 129 173
-133 112 135 170 139
-134 168 125 224 75
-135 133 188 35 112
-136 191 228 65 120
-137 192 63 119 152
-138 193 227 118 64
-139 133 59 147 170
-140 145 117 216 162
-141 146 159 185 142
-142 111 159 225 141
-143 211 179 147 213
-144 124 214 94 73
-145 212 140 162 219
-146 45 180 141 185
-147 143 59 213 139
-148 56 159 215 109
-149 57 202 170 186
-150 33 66 176 67
-151 125 105 29 31
-152 68 137 192 62
-153 199 127 53 163
-154 215 51 128 164
-155 220 58 212 61
-156 188 59 74 64
-157 168 72 162 65
-158 211 54 98 208
-159 148 215 141 142
-160 102 38 127 183
-161 99 171 195 130
-162 145 157 72 140
-163 22 91 53 153
-164 154 89 51 20
-165 90 71 52 21
-166 114 84 196 54
-167 55 169 82 115
-168 134 157 224 65
-169 167 14 82 84
-170 133 202 149 139
-171 88 226 161 130
-172 123 80 86 219
-173 132 27 126 129
-174 12 82 83 30
-175 81 226 10 32
-176 33 221 114 150
-177 220 34 222 115
-178 116 41 131 197
-179 44 143 79 211
-180 45 146 223 95
-181 89 210 46 103
-182 209 90 47 104
-183 91 102 48 160
-184 79 49 7 208
-185 146 50 73 141
-186 221 57 213 149
-187 225 50 204 63
-188 35 156 135 64
-189 69 227 217 120
-190 70 214 228 119
-191 25 136 228 75
-192 23 137 152 76
-193 77 24 138 227
-194 78 101 6 206
-195 99 80 161 8
-196 166 13 83 84
-197 178 15 85 131
-198 60 116 106 130
-199 61 127 117 153
-200 92 62 118 108
-201 66 121 107 207
-202 122 71 170 149
-203 123 93 72 217
-204 187 126 225 76
-205 100 96 42 218
-206 101 40 194 129
-207 201 26 107 97
-208 158 49 184 98
-209 122 37 104 182
-210 103 181 39 128
-211 143 179 158 54
-212 220 155 145 219
-213 143 221 147 186
-214 144 190 94 119
-215 154 148 159 128
-216 113 224 117 140
-217 189 93 203 120
-218 121 100 105 205
-219 145 212 172 86
-220 155 177 212 115
-221 176 114 213 186
-222 110 34 177 87
-223 124 180 95 43
-224 134 113 168 216
-225 187 111 204 142
-226 88 171 32 175
-227 189 69 138 193
-228 190 70 136 191
0